elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Validation of a numerical model with a benchmark Experiment for melting governed by natural convection in latent thermal energy storage

Vogel, Julian und Thess, André (2019) Validation of a numerical model with a benchmark Experiment for melting governed by natural convection in latent thermal energy storage. Applied Thermal Engineering, 148, Seiten 147-159. Elsevier. doi: 10.1016/j.applthermaleng.2018.11.032. ISSN 1359-4311.

[img] PDF
1MB

Kurzfassung

We report a combined experimental and numerical investigation of a melting process representative of latent thermal energy storage systems. The purpose of the work is to assess the accuracy of numerical models of melting governed by natural convection with a benchmark experiment. The experiment consists of a rectangular box filled with a model liquid (n-octadecane) and heated symmetrically from both sides such as to allow access for shadowgraph imaging and particle image velocimetry to measure the phase state and velocities, respectively. Our numerical method for computing fluid flow, temperature, and phase state involves two different approaches: the first is a detailed model using variable thermophysical properties and the volume of fluid method to allow volume expansion in an additional air phase that we solve in two dimensions. The second is a simplified model using constant thermophysical properties and the Boussinesq approximation that we solve either in two or in three dimensions. In the first part of the work, we systematically compare the simplified (Boussinesq) with the detailed (volume of fluid) model. We find that for the given set of parameters (Ra = 2*10^8, A = 4, Ste = 0.092, Pr = 52), the difference between the detailed and the simplified model in predicting global quantities such as the liquid phase fraction and the total heat flow rate is smaller than 4%, whereas velocities differ up to 20%. In the second part of the work, we compare the simulations of the simplified Boussinesq model in three dimensions with the benchmark experiment. We find that the simulation predicts the liquid phase fraction and temperatures with deviations below 4%, but significantly overestimates the velocity magnitudes. Our experimental and numerical tools provide a rational framework in which the accuracy of latent thermal energy storage simulations can be systematically and comprehensively assessed.

elib-URL des Eintrags:https://elib.dlr.de/123839/
Dokumentart:Zeitschriftenbeitrag
Titel:Validation of a numerical model with a benchmark Experiment for melting governed by natural convection in latent thermal energy storage
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vogel, Julianjulian.vogel (at) dlr.dehttps://orcid.org/0000-0001-9792-2332NICHT SPEZIFIZIERT
Thess, AndréAndre.Thess (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Februar 2019
Erschienen in:Applied Thermal Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:148
DOI:10.1016/j.applthermaleng.2018.11.032
Seitenbereich:Seiten 147-159
Verlag:Elsevier
ISSN:1359-4311
Status:veröffentlicht
Stichwörter:Phase change material (PCM) Solid-liquid phase change Computational Fluid Dynamics (CFD) Boussinesq approximation Volume of fluid method (VOF)
HGF - Forschungsbereich:Energie
HGF - Programm:Speicher und vernetzte Infrastrukturen
HGF - Programmthema:Thermische Energiespeicher
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Thermochemische Prozesse (Speicher) (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Thermische Prozesstechnik
Hinterlegt von: Vogel, Julian
Hinterlegt am:10 Dez 2018 15:06
Letzte Änderung:31 Okt 2023 15:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.