elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Simulation of a closed low-pressure honeycomb adsorber for thermal energy storage

Schäfer, Micha und Thess, André (2018) Simulation of a closed low-pressure honeycomb adsorber for thermal energy storage. International Journal of Heat and Mass Transfer (126), Seiten 796-807. Elsevier. doi: 10.1016/j.ijheatmasstransfer.2018.05.052. ISSN 0017-9310.

[img] PDF
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0017931018307968?via%3Dihub

Kurzfassung

The efficient implementation of renewable energy sources necessitates thermal energy storages. For domestic as well as industrial applications thermal energy storages based on closed adsorption are studied. Against this background, a closed low-pressure honeycomb adsorber is numerically examined in this work. The examined adsorber contains stacked layers of honeycomb blocks with rectangular channels which are separated by heat exchanger plates. Zeolite 13X and water is assumed as the adsorption pair. The focus of this work is solely on the adsorption process. The numerical model applies a one-dimensional model for the single channels of the honeycomb blocks. The one-dimensional model has been presented in a previous work of the authors. To account for transversal heat conduction in the honeycomb cross-section, the one-dimensional model equations are extended by heat source/sink terms. In addition, the mass transport equation is modified for rectangular channel flow. The results demonstrate that the heat and mass transfer and the adsorption processes are strongly coupled and can be only understood by their interaction. Regarding modelling aspects, it is found that the spatial variations of temperature and pressure as well as the local deviation from adsorption equilibrium are significant. Hence, no equilibrium assumptions should be made. Further, the minor rarefaction effect of slip should be considered. With respect to the application, the analysis yields, that the thermal power can be optimized by variation of the honeycomb geometry parameters, e.g. channel size. The local optimum is a result of the inverse dependencies of the external and internal mass transfer resistance on the channel size. Interestingly, the optimum for peak and mean power do not coincide in general. Finally, it is found that the thermal power can be controlled effectively by the inlet pressure.

elib-URL des Eintrags:https://elib.dlr.de/122801/
Dokumentart:Zeitschriftenbeitrag
Titel:Simulation of a closed low-pressure honeycomb adsorber for thermal energy storage
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schäfer, Michaschaefer (at) ies.uni-stuttgart.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thess, Andréandre.thess (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2018
Erschienen in:International Journal of Heat and Mass Transfer
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.ijheatmasstransfer.2018.05.052
Seitenbereich:Seiten 796-807
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Elsevier Ltd., xxxNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Elsevier
Name der Reihe:Elsevier Ltd.-ScienceDirect
ISSN:0017-9310
Status:veröffentlicht
Stichwörter:Adsorption, Zeolite, Honeycumb, Vacuum, Thermal energy storage, Simulation
HGF - Forschungsbereich:Energie
HGF - Programm:Speicher und vernetzte Infrastrukturen
HGF - Programmthema:Thermische Energiespeicher
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Thermochemische Prozesse (Speicher) (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik
Hinterlegt von: Gosolits, Claudia
Hinterlegt am:04 Dez 2018 15:59
Letzte Änderung:01 Mär 2020 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.