Martin del Campo Becerra, Gustavo Daniel und Nannini, Matteo und Reigber, Andreas (2018) Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach. IEEE Geoscience and Remote Sensing Letters, Seiten 1730-1734. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2858571. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
One of the main objectives of the upcoming space missions, such as Tandem-L and BIOMASS, is to map, on a global scale, the forest structure by means of synthetic aperture radar (SAR) tomography (TomoSAR). On one hand, the number of baselines is constrained to the revisit time that avoids temporal decorrelation issues. On the other hand, enhanced resolution is desired, since the forest structure is characterized from the vegetation layers that compose it, reflected in the tomographic profiles as local maxima. The TomoSAR nonlinear ill-conditioned inverse problem is conventionally tackled within the direction-of-arrival (DOA) estimation framework. The DOA-inspired nonparametric techniques are well suited to cope with distributed targets; nonetheless, the achievable resolution highly depends on the span of the tomographic aperture. Alternatively, superresolved parametric approaches have the main drawback related to the white noise model assumption that guaranties the separation of the signal and noise subspaces. Overcoming the disadvantages of the aforementioned techniques, in this letter, we address a novel maximum-likelihood (ML) inspired adaptive robust iterative approach (MARIA) for feature-enhanced TomoSAR reconstruction. MARIA performs resolution enhancement, with suppression of artifacts and ambiguity levels reduction, to an initial estimate of the continuous power spectrum pattern. After convergence, an accurate location of the closely spaced phase centers is achieved, easing the characterization of the forest structure. The feature-enhancing capabilities of the proposed approach are corroborated using airborne F-SAR data of the German Aerospace Center (DLR).
elib-URL des Eintrags: | https://elib.dlr.de/122179/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 1 November 2018 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/LGRS.2018.2858571 | ||||||||||||||||
Seitenbereich: | Seiten 1730-1734 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Maximum-likelihood (ML), spectral analysis (SA), synthetic aperture radar (SAR) tomography (TomoSAR) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||
Hinterlegt von: | Martin del Campo Becerra, Gustavo | ||||||||||||||||
Hinterlegt am: | 12 Okt 2018 10:34 | ||||||||||||||||
Letzte Änderung: | 08 Nov 2023 10:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags