elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach

Martin del Campo Becerra, Gustavo Daniel und Nannini, Matteo und Reigber, Andreas (2018) Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach. IEEE Geoscience and Remote Sensing Letters, Seiten 1730-1734. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2858571. ISSN 1545-598X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

One of the main objectives of the upcoming space missions, such as Tandem-L and BIOMASS, is to map, on a global scale, the forest structure by means of synthetic aperture radar (SAR) tomography (TomoSAR). On one hand, the number of baselines is constrained to the revisit time that avoids temporal decorrelation issues. On the other hand, enhanced resolution is desired, since the forest structure is characterized from the vegetation layers that compose it, reflected in the tomographic profiles as local maxima. The TomoSAR nonlinear ill-conditioned inverse problem is conventionally tackled within the direction-of-arrival (DOA) estimation framework. The DOA-inspired nonparametric techniques are well suited to cope with distributed targets; nonetheless, the achievable resolution highly depends on the span of the tomographic aperture. Alternatively, superresolved parametric approaches have the main drawback related to the white noise model assumption that guaranties the separation of the signal and noise subspaces. Overcoming the disadvantages of the aforementioned techniques, in this letter, we address a novel maximum-likelihood (ML) inspired adaptive robust iterative approach (MARIA) for feature-enhanced TomoSAR reconstruction. MARIA performs resolution enhancement, with suppression of artifacts and ambiguity levels reduction, to an initial estimate of the continuous power spectrum pattern. After convergence, an accurate location of the closely spaced phase centers is achieved, easing the characterization of the forest structure. The feature-enhancing capabilities of the proposed approach are corroborated using airborne F-SAR data of the German Aerospace Center (DLR).

elib-URL des Eintrags:https://elib.dlr.de/122179/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards Feature Enhanced SAR Tomography: A Maximum-Likelihood Inspired Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Martin del Campo Becerra, Gustavo DanielGustavo.MartindelCampoBecerra (at) dlr.dehttps://orcid.org/0000-0003-1642-6068NICHT SPEZIFIZIERT
Nannini, Matteomatteo.nannini (at) dlr.dehttps://orcid.org/0000-0003-3523-9639NICHT SPEZIFIZIERT
Reigber, AndreasAndreas.Reigber (at) dlr.dehttps://orcid.org/0000-0002-2118-5046NICHT SPEZIFIZIERT
Datum:1 November 2018
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/LGRS.2018.2858571
Seitenbereich:Seiten 1730-1734
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Maximum-likelihood (ML), spectral analysis (SA), synthetic aperture radar (SAR) tomography (TomoSAR)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Martin del Campo Becerra, Gustavo
Hinterlegt am:12 Okt 2018 10:34
Letzte Änderung:08 Nov 2023 10:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.