elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

FRANCA - Developing an automated processing chain to quantify soil, green and dry vegetation in spaceborne imaging spectroscopy data

Ziel, Valentin und Bachmann, Martin (2018) FRANCA - Developing an automated processing chain to quantify soil, green and dry vegetation in spaceborne imaging spectroscopy data. IEEE whispers 2018, 2018-09-23 - 2018-09-26, Amsterdam, Niederlande.

[img] PDF - Nur DLR-intern zugänglich
53MB

Kurzfassung

In many previous studies linear spectral unmixing approaches have shown to be an accurate retrieval method for quantitative subpixel information. In addition, when the spectra of all endmembers (EM) are known, approaches based on multiple endmember spectral mixture analysis (MESMA) are highly accurate. For the retrieval of the EM spectra, spatial-spectral approaches such as the SSEE [ROGGE et al., 2007] were developed and successfully applied in many studies. But for many real-world applications with less-than-perfect EM knowledge, the retrieval accuracies are signifcantly lower. To overcome this problem, an automated MESMA methodology with an increased stability in case of inaccurate EM, or when the whole spectral variability cannot be completely represented by EMs, was developed [BACHMANN 2008, BACHMANN et al., 2009]. Also the combination of the SSEE endmember extraction and the uMESMA unmixing was already applied for soil-related application [MALEC et al., 2015; BAYER et al., 2016 ]. In preparation of the upcoming DESIS and EnMAP missions, an automated processing chain from including EM extraction, EM classifcation and MESMA unmixing is currently developed, which are based on the Python versions of SSSEE, uMESMA, and newly developed spectral classifers. The full chain is developed in Python3, and is using the Luigi workfow management in combination with a Docker-based distribution, therefore preparing for the improved availability of hyperspectral data in context of the upcoming hyperspectral spaceborne missions. Within this presentation, the overall processing chain design is presented, and details are given on the implementational and confgurational requirements for SSEE and uMESMA allowing for a fully automated and orchestrated processing.

elib-URL des Eintrags:https://elib.dlr.de/121933/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:FRANCA - Developing an automated processing chain to quantify soil, green and dry vegetation in spaceborne imaging spectroscopy data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ziel, Valentinvalentin.ziel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bachmann, Martinmartin.bachmann (at) dlr.dehttps://orcid.org/0000-0001-8381-7662NICHT SPEZIFIZIERT
Datum:September 2018
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:FRANCA, FCOVER, SSEE, MESMA, uMESMA, Python, Hyperspectral, Random Forest
Veranstaltungstitel:IEEE whispers 2018
Veranstaltungsort:Amsterdam, Niederlande
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 September 2018
Veranstaltungsende:26 September 2018
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Ziel, Valentin
Hinterlegt am:23 Okt 2018 12:22
Letzte Änderung:24 Apr 2024 20:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.