Sezari, Behrooz und Möller, Dietmar P. F. und Deutschmann, Andreas (2018) Anomaly-based Network Intrusion Detection Model using Deep Learning in Airports. In: Proceedings - 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018. IEEE TrustCom 2018. IEEE Trust Com 2018, 2018-07-31, New York City. doi: 10.1109/TrustCom/BigDataSE.2018.00261. ISBN 978-153864387-7.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The number of cyber-attacks are growing quickly and we are encountering modern and complex network intrusion attacks everyday even in secure computer networks. Last year, many airports in different countries were under attack of multiple network intrusions in various cybersegments especially Information and Communication Technology (ICT) system (e.g. Ransomware attacks). Such cyber-attacks could happen again in much more destructive ways which can cause irreparable losses, and endanger human life by disruption and corruption of the airport ICT system. We are approaching an anomaly-based Network Intrusion Detection System (IDS) using deep learning which provides a normal system behavior model and detects an abnormal behavior. In other words, this model is designed to detect not only known network intrusion attacks, but also unknown and modern attacks. We have trained and tested our model with DARPA dataset used in KDD 1999 Cup. Our model achieved an outstanding result with highly accurate detection rate, also low false alarm rate, which is superior to the previous researches conducted on this dataset.
elib-URL des Eintrags: | https://elib.dlr.de/121797/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Anomaly-based Network Intrusion Detection Model using Deep Learning in Airports | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 31 Juli 2018 | ||||||||||||||||
Erschienen in: | Proceedings - 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications and 12th IEEE International Conference on Big Data Science and Engineering, Trustcom/BigDataSE 2018 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/TrustCom/BigDataSE.2018.00261 | ||||||||||||||||
Verlag: | IEEE TrustCom 2018 | ||||||||||||||||
ISBN: | 978-153864387-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Intrusion Detection, Cyber-Security, Deep Learning, Feedforwards Neural Network, Network Intrusion Detection | ||||||||||||||||
Veranstaltungstitel: | IEEE Trust Com 2018 | ||||||||||||||||
Veranstaltungsort: | New York City | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsdatum: | 31 Juli 2018 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Optimode.net (alt) | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Flughafenwesen und Luftverkehr > Flughafenforschung | ||||||||||||||||
Hinterlegt von: | Deutschmann, Andreas | ||||||||||||||||
Hinterlegt am: | 24 Sep 2018 09:29 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags