elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Non-Rigid Feature Extraction Methods in Real Time Forest Fire Detection Algorithms

Nowzad, Azarm und Jock, Andreas und Reulke, Ralf (2018) Non-Rigid Feature Extraction Methods in Real Time Forest Fire Detection Algorithms. VIII International Conference on Forest Fire Research, 2018-11-09 - 2018-11-16, Coimbra, Portugal.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

In this paper a smoke detection algorithm for real time forest fire detection is proposed. The scene complexity in open-air environment and the non-rigid nature of the smoke cause high false positive alarms in many detection algorithms. To increase the efficiency of the algorithm, a multi features smoke approach is presented in this work. To segment the possible smoke regions, a change detection method is applied to the image. Afterwards, static and dynamic features of smoke are analyzed. Merging the extracted smoke features and applying morphological processes, region(s) with the highest probability of having smoke pixels are extracted. Two complementary texture features, Gabor filter and Local Binary Pattern (LBP), are applied to the input images. The input image sequence are first characterized by bank of Gabor filters covering the spatial- frequency domain. As multichannel filtering approach, Gabor filters extract features at different orientations and scales. By segmenting the energy image, smoke candidates are extracted and examined using An eXtended Center-Symmetric Local Binary Pattern (XCS-LBP). The image is converted to an array of integer labels as feature vectors for further analysis on smoke and non-smoke classification. The smoke area shows a blurred and smooth texture characteristic compared to the non-smoke areas. This criterion is examined using the histogram of LBP. A number of 5000 labelled smoke blocks are applied to the XCS-LBP operator and the average histogram is calculated and normalized as a priori variable. Applying spectral analysis, a fuzzy logic decision process is implemented on a chromatic analysis enhanced in the HSI (Hue-Saturation-Intensity) color mode. To define the fuzzy rules, empirical analysis is applied on a set of image data. A trial and error method is then used to reduce the failures. The algorithm is tested on a natural scene forest fire data set, collected from three different sits in Germany. Experimental results show high performance accuracy in smoke classification.

elib-URL des Eintrags:https://elib.dlr.de/121718/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Non-Rigid Feature Extraction Methods in Real Time Forest Fire Detection Algorithms
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nowzad, AzarmHU BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jock, AndreasIQ wireless GmbHNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reulke, RalfInstitut für Optische SensorsystemeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Non-Rigid object detection, Forest fire detection, smoke features, smoke classification, fuzzy logic smoke detection, smoke texture analysis
Veranstaltungstitel:VIII International Conference on Forest Fire Research
Veranstaltungsort:Coimbra, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 November 2018
Veranstaltungsende:16 November 2018
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Technologien und Anwendungen
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Optische Sensorsysteme
Hinterlegt von: Dombrowski, Ute
Hinterlegt am:19 Dez 2018 11:08
Letzte Änderung:24 Apr 2024 20:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.