Narezo Guzman, Daniela und Hadzic, Edin und Groos, Jörn Christoffer (2019) Anomaly detection for railway switch monitoring data to enable condition-based maintenance. In: WCRR 2019 Congress Proceedings. 12th World Congress on Railway Research, 2019-10-28 - 2019-11-01, Tokyo, Japan.
PDF
0B |
Kurzfassung
Railway switches are a crucial railway asset since they enable train operators to route trains by changing tracks. A switch failure can compromise the availability of a larger part of the infrastructure in cases when train traffic heavily relies on that switch. Nearly one third of the total costs of railway maintenance is spent for switches and crossings. Thus there is a need for increased switch reliability and costs reduction. Nowadays tens of thousands assets around the world are remotely monitored. Switch monitoring data in combination with weather information can be combined to characterize switch functioning and to determine how it is influenced by the weather. Such a characterization allows the detection of anomalies i.e. emerging and sudden failures under different weather conditions. In this paper results from data-based switch-specific models for anomaly detection, which account for temperature influence, are presented. These results are validated against two annotated data sets based on experts' assessment. It is found that the model capabilities strongly depend from switch to switch. A model trained with features (derived from the monitoring data) that are narrowly distributed within small temperature intervals has a very good performance; otherwise the performance is poor. Additionally the influence of rain and humidity on the switch functioning was explored by including data from the closest weather station. No correlation was found probably due to the fact that the available weather information is only a proxy of the local conditions at the switch, stressing the importance of measuring weather parameters at the asset.
elib-URL des Eintrags: | https://elib.dlr.de/121295/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Anomaly detection for railway switch monitoring data to enable condition-based maintenance | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | WCRR 2019 Congress Proceedings | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Condition-based maintenance, switch condition monitoring | ||||||||||||||||
Veranstaltungstitel: | 12th World Congress on Railway Research | ||||||||||||||||
Veranstaltungsort: | Tokyo, Japan | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 Oktober 2019 | ||||||||||||||||
Veranstaltungsende: | 1 November 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Next Generation Railway Systems III (alt) | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Datenerfassung und Informationsgewinnung | ||||||||||||||||
Hinterlegt von: | Narezo Guzman, Daniela | ||||||||||||||||
Hinterlegt am: | 07 Okt 2019 08:43 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags