Xia, Yuanxin und Tian, Jiaojiao und d'Angelo, Pablo und Reinartz, Peter (2018) Dense matching comparison between census and a convolutional neural network algorithm for plant reconstruction. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV (2), Seiten 303-309. ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020”, 2018-06-04 - 2018-06-07, Riva del Garda, Italy. doi: 10.5194/isprs-annals-IV-2-303-2018. ISSN 2194-9042.
PDF
5MB |
Kurzfassung
3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.
elib-URL des Eintrags: | https://elib.dlr.de/120586/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Dense matching comparison between census and a convolutional neural network algorithm for plant reconstruction | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | IV | ||||||||||||||||||||
DOI: | 10.5194/isprs-annals-IV-2-303-2018 | ||||||||||||||||||||
Seitenbereich: | Seiten 303-309 | ||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Dense Matching, Plants, 3D Modelling, Semi-Global Matching, Census, Convolutional Neural Networks | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020” | ||||||||||||||||||||
Veranstaltungsort: | Riva del Garda, Italy | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 4 Juni 2018 | ||||||||||||||||||||
Veranstaltungsende: | 7 Juni 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Xia, Yuanxin | ||||||||||||||||||||
Hinterlegt am: | 25 Jun 2018 14:54 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags