Bittner, Ksenia und d'Angelo, Pablo und Körner, Marco und Reinartz, Peter (2018) Automatic Large-Scale 3D Building Shape Refinement Using Conditional Generative Adversarial Networks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020", 2018-06-04 - 2018-06-07, Riva del Garda, Italien. doi: 10.1109/CVPRW.2018.00249.
PDF
4MB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2/103/2018/isprs-archives-XLII-2-103-2018.pdf
Kurzfassung
Three-dimensional building reconstruction from remote sensing imagery is one of the most difficult and important 3D modeling problems for complex urban environments. The main data sources provided the digital representation of the Earths surface and related natural, cultural, and man-made objects of the urban areas in remote sensing are the digital surface models (DSMs). The DSMs can be obtained either by light detection and ranging (LIDAR) , SAR interferometry or from stereo images. Our approach relies on automatic global 3D building shape refinement from stereo DSMs using deep learning techniques. This refinement is necessary as the DSMs, which are extracted from image matching point clouds, suffer from occlusions, outliers, and noise. Though most previous works have shown promising results for building modeling, this topic remains an open research area. We present a new methodology which not only generates images with continuous values representing the elevation models but, at the same time, enhances the 3D object shapes, buildings in our case. Mainly, we train a conditional generative adversarial network (cGAN) to generate accurate LIDAR-like DSM height images from the noisy stereo DSM input. The obtained results demonstrate the strong potential of creating large areas remote sensing depth images where the buildings exhibit better-quality shapes and roof form
elib-URL des Eintrags: | https://elib.dlr.de/120564/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Automatic Large-Scale 3D Building Shape Refinement Using Conditional Generative Adversarial Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2018 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | XLII-2 | ||||||||||||||||||||
DOI: | 10.1109/CVPRW.2018.00249 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||
Verlag: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Conditional generative adversarial networks, Digital Surface Model, 3D scene refinement, 3D building shape | ||||||||||||||||||||
Veranstaltungstitel: | ISPRS TC II Mid-term Symposium “Towards Photogrammetry 2020" | ||||||||||||||||||||
Veranstaltungsort: | Riva del Garda, Italien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 4 Juni 2018 | ||||||||||||||||||||
Veranstaltungsende: | 7 Juni 2018 | ||||||||||||||||||||
Veranstalter : | International Society for Photogrammetry and Remote Sensing | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||
Hinterlegt am: | 22 Jun 2018 12:35 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags