elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks

Henry, Corentin und Azimi, Seyedmajid und Merkle, Nina Marie (2018) Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 15 (12), Seiten 1867-1871. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2864342. ISSN 1545-598X.

[img] PDF
1MB

Offizielle URL: https://ieeexplore.ieee.org/document/8447237

Kurzfassung

Remote sensing is extensively used in cartography. As transportation networks grow and change, extracting roads automatically from satellite images is crucial to keep maps up-to-date. Synthetic Aperture Radar satellites can provide high resolution topographical maps. However roads are difficult to identify in these data as they look visually similar to targets such as rivers and railways. Most road extraction methods on Synthetic Aperture Radar images still rely on a prior segmentation performed by classical computer vision algorithms. Few works study the potential of deep learning techniques, despite their successful applications to optical imagery. This letter presents an evaluation of Fully-Convolutional Neural Networks for road segmentation in SAR images. We study the relative performance of early and state-of-the-art networks after carefully enhancing their sensitivity towards thin objects by adding spatial tolerance rules. Our models shows promising results, successfully extracting most of the roads in our test dataset. This shows that, although Fully-Convolutional Neural Networks natively lack efficiency for road segmentation, they are capable of good results if properly tuned. As the segmentation quality does not scale well with the increasing depth of the networks, the design of specialized architectures for roads extraction should yield better performances.

elib-URL des Eintrags:https://elib.dlr.de/120552/
Dokumentart:Zeitschriftenbeitrag
Titel:Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Henry, CorentinCorentin.henry (at) dlr.dehttps://orcid.org/0000-0002-4330-3058NICHT SPEZIFIZIERT
Azimi, SeyedmajidSeyedmajid.Azimi (at) dlr.dehttps://orcid.org/0000-0002-6084-2272NICHT SPEZIFIZIERT
Merkle, Nina MarieNina.Merkle (at) dlr.dehttps://orcid.org/0000-0003-4177-1066NICHT SPEZIFIZIERT
Datum:Dezember 2018
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.1109/LGRS.2018.2864342
Seitenbereich:Seiten 1867-1871
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Road extraction, synthetic aperture radar, high resolution SAR data, TerraSAR-X, deep learning, semantic segmentation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Henry, Corentin
Hinterlegt am:22 Jun 2018 12:15
Letzte Änderung:31 Okt 2023 15:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.