Henry, Corentin und Azimi, Seyedmajid und Merkle, Nina Marie (2018) Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 15 (12), Seiten 1867-1871. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2864342. ISSN 1545-598X.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8447237
Kurzfassung
Remote sensing is extensively used in cartography. As transportation networks grow and change, extracting roads automatically from satellite images is crucial to keep maps up-to-date. Synthetic Aperture Radar satellites can provide high resolution topographical maps. However roads are difficult to identify in these data as they look visually similar to targets such as rivers and railways. Most road extraction methods on Synthetic Aperture Radar images still rely on a prior segmentation performed by classical computer vision algorithms. Few works study the potential of deep learning techniques, despite their successful applications to optical imagery. This letter presents an evaluation of Fully-Convolutional Neural Networks for road segmentation in SAR images. We study the relative performance of early and state-of-the-art networks after carefully enhancing their sensitivity towards thin objects by adding spatial tolerance rules. Our models shows promising results, successfully extracting most of the roads in our test dataset. This shows that, although Fully-Convolutional Neural Networks natively lack efficiency for road segmentation, they are capable of good results if properly tuned. As the segmentation quality does not scale well with the increasing depth of the networks, the design of specialized architectures for roads extraction should yield better performances.
elib-URL des Eintrags: | https://elib.dlr.de/120552/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Road Segmentation in SAR Satellite Images with Deep Fully-Convolutional Neural Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Dezember 2018 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 15 | ||||||||||||||||
DOI: | 10.1109/LGRS.2018.2864342 | ||||||||||||||||
Seitenbereich: | Seiten 1867-1871 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Road extraction, synthetic aperture radar, high resolution SAR data, TerraSAR-X, deep learning, semantic segmentation | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Henry, Corentin | ||||||||||||||||
Hinterlegt am: | 22 Jun 2018 12:15 | ||||||||||||||||
Letzte Änderung: | 31 Okt 2023 15:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags