Mostegel, Christian und Fraundorfer, Friedrich und Bischof, Horst (2018) Prioritized multi-view stereo depth map generation using confidence prediction. ISPRS Journal of Photogrammetry and Remote Sensing, 167, Seiten 167-180. Elsevier. doi: 10.1016/j.isprsjprs.2018.03.022. ISSN 0924-2716.
PDF
9MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S092427161830087X
Kurzfassung
In this work, we propose a novel approach to prioritize the depth map computation of multi-view stereo (MVS) to obtain compact 3D point clouds of high quality and completeness at low computational cost. Our prioritization approach operates before the MVS algorithm is executed and consists of two steps. In the first step, we aim to find a good set of matching partners for each view. In the second step, we rank the resulting view clusters (i.e. key views with matching partners) according to their impact on the fulfillment of desired quality parameters such as completeness, ground resolution and accuracy. Additional to geometric analysis, we use a novel machine learning technique for training a confidence predictor. The purpose of this confidence predictor is to estimate the chances of a successful depth reconstruction for each pixel in each image for one specific MVS algorithm based on the RGB images and the image constellation. The underlying machine learning technique does not require any ground truth or manually labeled data for training, but instead adapts ideas from depth map fusion for providing a supervision signal. The trained confidence predictor allows us to evaluate the quality of image constellations and their potential impact to the resulting 3D reconstruction and thus builds a solid foundation for our prioritization approach. In our experiments, we are thus able to reach more than 70% of the maximal reachable quality fulfillment using only 5% of the available images as key views. For evaluating our approach within and across different domains, we use two completely different scenarios, i.e. cultural heritage preservation and reconstruction of single family houses.
elib-URL des Eintrags: | https://elib.dlr.de/120524/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Prioritized multi-view stereo depth map generation using confidence prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | August 2018 | ||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 167 | ||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2018.03.022 | ||||||||||||||||
Seitenbereich: | Seiten 167-180 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Multi-view stereo; Machine learning; Confidence measures; View prioritization; Image clustering; View cluster ranking | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 03 Jul 2018 18:38 | ||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags