Kornfeld, Nils und Lücken, Leonhard und Leich, Andreas und Wagner, Peter und Saul, Hagen und Hoffmann, Ragna (2018) Crash Rate Estimation by Aerial Image Analysis. In: Proceedings of Expert Symposium on Accident Research (ESAR) 2018. Expert Symposium on Accident Research (ESAR) 2018, 2018-04-19 - 2018-04-20, Hannover.
PDF (Abstract)
203kB |
Kurzfassung
Estimating road safety is a major concern of a large body of theoretical research as well as for practitioners all over the world. Most related studies rely heavily on structured data as tables concerning the road geometry, infrastructural items, traffic volumes, etc., which are not always available. A more and more universally available source of data, which has rarely been used in conjunction with road safety research are aerial or satellite images. These images potentially contain a wealth of information relevant to the prediction of road safety if they could be thoroughly analyzed in great numbers. Coincident with the widespread availability of satellite and aerial images, machine learning algorithms for image processing and automatic object detection and classification are maturing. This allows the automated processing of huge amounts of image data by artificial neural networks (ANNs) or related machine learning systems, an area in which convolutional neural networks have shown a significant improvement over conventional methods. In the submitted work initial results on the application of machine learning on aerial images are presented. The goal is to determine an estimation of road safety levels. ANNs were trained to predict crash frequencies for road intersections relying merely on aerial images of the intersections. The used data consists of police recorded crashes in the city of Berlin and aerial images provided by the Berlin Senate Department for Urban Development. The performance of the ANN suggests that the line of research is worth further pursuit. For instance, the trained ANN was able to predict the presence of crashes on intersections in a Berlin district excluded from the training process with an accuracy of approximately 74%.
elib-URL des Eintrags: | https://elib.dlr.de/120283/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Crash Rate Estimation by Aerial Image Analysis | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||||||||||
Erschienen in: | Proceedings of Expert Symposium on Accident Research (ESAR) 2018 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Deep Learning, Image Classification, Regression | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Expert Symposium on Accident Research (ESAR) 2018 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Hannover | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 19 April 2018 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 20 April 2018 | ||||||||||||||||||||||||||||
Veranstalter : | Medizinische Hochschule Hannover, Accident Research Unit; Medizinische Hochschule Hannover Trauma Department; Per L. Reichertz Institut für Medizinische Informatik | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik | ||||||||||||||||||||||||||||
Hinterlegt von: | Kornfeld, Nils | ||||||||||||||||||||||||||||
Hinterlegt am: | 08 Jan 2020 14:27 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags