Mariani, S. und Tarokh, L. und Djonlagic, I. und Cade, B.E. und Morrical, M.G. und Yaffe, K. und Stone, K.L. und Loparo, K.A. und Purcell, S. und Redline, S. und Aeschbach, Daniel (2018) Evaluation of an automated pipeline for large-scale EEG spectral analysis: the National Sleep Research Resource. Sleep Medicine, 47, Seiten 126-136. Elsevier. doi: 10.1016/j.sleep.2017.11.1128. ISSN 1389-9457.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Study objectives: We present an automated sleep electroencephalogram (EEG) spectral analysis pipeline that includes an automated artifact detection step, and we test the hypothesis that spectral power density estimates computed with this pipeline are comparable to those computed with a commercial method preceded by visual artifact detection by a sleep expert (standard approach). Methods: EEG data were analyzed from the C3-A2 lead in a sample of polysomnograms from 161 older women participants in a community-based cohort study. We calculated the sensitivity, specificity, accuracy, and Cohen's kappa measures from epoch-by-epoch comparisons of automated to visual-based artifact detection results; then we computed the average EEG spectral power densities in six commonly used EEG frequency bands and compared results from the two methods using correlation analysis and BlandeAltman plots. Results: Assessment of automated artifact detection showed high specificity [96.8%e99.4% in non-rapid eye movement (NREM), 96.9%e99.1% in rapid eye movement (REM) sleep] but low sensitivity (26.7% e38.1% in NREM, 9.1e27.4% in REM sleep). However, large artifacts (total power > 99th percentile) were removed with sensitivity up to 87.7% in NREM and 90.9% in REM, with specificities of 96.9% and 96.6%, respectively. Mean power densities computed with the two approaches for all EEG frequency bands showed very high correlation (≥0.99). The automated pipeline allowed for a 100-fold reduction in analysis time with regard to the standard approach. Conclusion: Despite low sensitivity for artifact rejection, the automated pipeline generated results comparable to those obtained with a standard method that included manual artifact detection. Automated pipelines can enable practical analyses of recordings from thousands of individuals, allowing for use in genetics and epidemiological research requiring large samples.
elib-URL des Eintrags: | https://elib.dlr.de/120151/ | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||||||
Titel: | Evaluation of an automated pipeline for large-scale EEG spectral analysis: the National Sleep Research Resource | ||||||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Sleep Medicine | ||||||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Band: | 47 | ||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.sleep.2017.11.1128 | ||||||||||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 126-136 | ||||||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||||||||||||||||||
Name der Reihe: | Elsevier Sleep Medicine | ||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1389-9457 | ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Large-scale spectral Analysis, Sleep-EEG, artifact detection | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Faktor Mensch und Sicherheit in der Luftfahrt (alt) | ||||||||||||||||||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Luft- und Raumfahrtmedizin > Schlaf und Humanfaktoren | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Meckes, Elke | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 05 Jun 2018 13:17 | ||||||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 01 Okt 2020 16:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags