elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Optimization of OpenStreetMap Building Footprints Based on Semantic Information of Oblique UAV Images

Zhuo, Xiangyu und Fraundorfer, Friedrich und Kurz, Franz und Reinartz, Peter (2018) Optimization of OpenStreetMap Building Footprints Based on Semantic Information of Oblique UAV Images. Remote Sensing, 10, 624/1-624/18. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs10040624. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
35MB

Offizielle URL: http://www.mdpi.com/2072-4292/10/4/624

Kurzfassung

Building footprint information is vital for 3D building modeling. Traditionally, in remote sensing, building footprints are extracted and delineated from aerial imagery and/or LiDAR point cloud. Taking a different approach, this paper is dedicated to the optimization of OpenStreetMap (OSM) building footprints exploiting the contour information, which is derived from deep learning-based semantic segmentation of oblique images acquired by the Unmanned Aerial Vehicle (UAV). First, a simplified 3D building model of Level of Detail 1 (LoD 1) is initialized using the footprint information from OSM and the elevation information from Digital Surface Model (DSM). In parallel, a deep neural network for pixel-wise semantic image segmentation is trained in order to extract the building boundaries as contour evidence. Subsequently, an optimization integrating the contour evidence from multi-view images as a constraint results in a refined 3D building model with optimized footprints and height. Our method is leveraged to optimize OSM building footprints for four datasets with different building types, demonstrating robust performance for both individual buildings and multiple buildings regardless of image resolution. Finally, we compare our result with reference data from German Authority Topographic-Cartographic Information System (ATKIS). Quantitative and qualitative evaluations reveal that the original OSM building footprints have large offset, but can be significantly improved from meter level to decimeter level after optimization.

elib-URL des Eintrags:https://elib.dlr.de/120064/
Dokumentart:Zeitschriftenbeitrag
Titel:Optimization of OpenStreetMap Building Footprints Based on Semantic Information of Oblique UAV Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhuo, XiangyuXiangyu.Zhuo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fraundorfer, Friedrichfriedrich.fraundorfer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kurz, FranzFranz.Kurz (at) dlr.dehttps://orcid.org/0000-0003-1718-0004NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:18 April 2018
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:10
DOI:10.3390/rs10040624
Seitenbereich:624/1-624/18
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:building footprint; oblique UAV images; semantic segmentation; deep neural network
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zielske, Mandy
Hinterlegt am:20 Jun 2018 06:47
Letzte Änderung:08 Nov 2023 14:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.