elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Snow Cover changes in Central Asia derived from long term time series analysis of medium resolution remote sensing data

Dietz, Andreas und Künzer, Claudia (2018) Snow Cover changes in Central Asia derived from long term time series analysis of medium resolution remote sensing data. DLR Conference on Climate Change 2018, 2018-04-17 - 2018-04-19, Cologne.

[img] PDF
1MB

Kurzfassung

Climate change alters the distribution, amount, and duration of snow cover and therefore affects the global radiation budget, tourism, flora and fauna, and water availability. In Central Asia with its continental climate, most precipitation is falling as snow during winter. Changing snow cover characteristics have a direct impact on water related issues such as irrigation, water scarcity, hydropower generation, and political tensions. It is therefore important to monitor the occurring processes, analyse possible trends, and identify those regions which are most vulnerable in terms of future developments. The Global SnowPack of DLR is a set of medium resolution (500 m – 1000 m) snow cover information derived from Moderate-resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) data. Available for Central Asia since 1986, it is an ideal dataset to analyse the snow cover changes in the mountains of Pamir, Tian Shan, and Altai – the region where the rivers Syr Darya, Amu Darya, and Ili originate. These rivers are most relevant for the water availability, and any process altering their runoff regimes potentially affect millions of people. The 30 year lasting time series of the daily Global SnowPack data revealed a significant shift of the snow cover season towards earlier onset and melt dates in many of Central Asia’s mountain regions. This shift causes the runoff peak for many upstream tributaries to occur earlier, while at the same time the runoff during the end of the season is reduced. The analysis clearly demonstrated the value of long term time series of medium resolution data. Even though the capabilities of sensors such as AVHRR are limited, their availability since the 1980s renders them a most valuable and unique source of information when trying to analyse the long term effects of climate change on our environment.

elib-URL des Eintrags:https://elib.dlr.de/119786/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Snow Cover changes in Central Asia derived from long term time series analysis of medium resolution remote sensing data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Künzer, ClaudiaClaudia.Kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2018
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seite 1
Status:veröffentlicht
Stichwörter:snow, snow cover Global SnowPack, MODIS, AVHRR, Central Asia, Hydrology, climate change
Veranstaltungstitel:DLR Conference on Climate Change 2018
Veranstaltungsort:Cologne
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 April 2018
Veranstaltungsende:19 April 2018
Veranstalter :DLR, UNOOSA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Dietz, Andreas
Hinterlegt am:09 Mai 2018 11:02
Letzte Änderung:24 Apr 2024 20:24

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.