elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Effect of Very-Large-Scale Motions on One- and Two-Point Statistics in Turbulent Pipe Flow Investigated by Direct Numerical Simulations

Bauer, Christian und Wagner, Claus (2018) Effect of Very-Large-Scale Motions on One- and Two-Point Statistics in Turbulent Pipe Flow Investigated by Direct Numerical Simulations. 5th International Conference on Turbulence and Interactions, 2018-06-25 - 2018-06-29, Martinique, Frankreich.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://ti2018.onera.fr/

Kurzfassung

Very long coherent regions of energetic streamwise velocity fluctuations, so-called very-large-scale motions (VLSM) play an important role at high Reynolds number wall-bounded turbulence since they carry an substantial fraction of turbulent energy. The footprint of VLSM is visible in the three-dimensional velocity correlation of the streamwise velocity for Re_\tau=1500. Although the maximum energy content of VLSM is located in the outer flow region, they penetrate deep into the buffer layer. In the very vicinity of the wall large local wall-normal velocity fluctuations (velocity spikes), which are rare both and space and time, result in a high wall-normal flatness value. The interaction of the large- and very-large-scale outer flow motions with the near-wall coherent structures --- as velocity spikes --- and their impact on high-order turbulence statistics was recently discussed by Bauer et al (2017). For direct numerical simulations the challenging aspect is to resolve the full range of turbulent scales including VLSM and velocity spikes at Reynolds numbers high enough, and within computational domains large enough, for VLSM to settle. We carried out pipe flow simulations in a domain of length L=42R for Re_\tau = 1500, where Re_\tau=u_\tau R / \nu is the friction Reynolds number based on the friction velocity u_\tau, the pipe radius R and the kinematic viscosity \nu. At the conference the influence of VLSM on turbulent statistics will be presented. Coherent motions will be shown by means of three-dimensional two-point velocity correlations. Furthermore, Reynolds number depended scaling laws for statistical moments of the velocity distribution will be discussed and related to the underlying coherent motions.

elib-URL des Eintrags:https://elib.dlr.de/119588/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Effect of Very-Large-Scale Motions on One- and Two-Point Statistics in Turbulent Pipe Flow Investigated by Direct Numerical Simulations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bauer, ChristianChristian.Bauer (at) dlr.dehttps://orcid.org/0000-0003-1838-6194NICHT SPEZIFIZIERT
Wagner, ClausClaus.Wagner (at) dlr.dehttps://orcid.org/0000-0003-2273-0568NICHT SPEZIFIZIERT
Datum:28 Juni 2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Turbulent Pipe Flow, DNS, Very-Large-Scale Motions
Veranstaltungstitel:5th International Conference on Turbulence and Interactions
Veranstaltungsort:Martinique, Frankreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 Juni 2018
Veranstaltungsende:29 Juni 2018
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Bodengebundener Verkehr (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V BF - Bodengebundene Fahrzeuge
DLR - Teilgebiet (Projekt, Vorhaben):V - Next Generation Train III (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Fluidsysteme, GO
Hinterlegt von: Bauer, Christian
Hinterlegt am:11 Jul 2018 13:16
Letzte Änderung:24 Apr 2024 20:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.