Bahmanyar, Reza und Espinoza-Molina, Daniela und Datcu, Mihai (2018) Multisensor Earth Observation Image Classification Based on a Multimodal Latent Dirichlet Allocation Model. IEEE Geoscience and Remote Sensing Letters, 15 (3), Seiten 459-463. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2018.2794511. ISSN 1545-598X.
PDF
24MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8278834/
Kurzfassung
Many previous researches have already shown the advantages of multisensor land-cover classification. Here, we propose an innovative land-cover classification approach based on learning a joint latent model of synthetic aperture radar (SAR) and multispectral satellite images using multimodal latent Dirichlet allocation (mmLDA), a probabilistic generative model. It has already been successfully applied to various other problems dealing with multimodal data. For our experiments, we chose overlapping SAR and multispectral images of two regions of interest. The images were tiled into patches and their local primitive features were extracted. Then each image patch is represented by SAR and multispectral bag-of-words (BoW) models. The BoW values are both fed to the mmLDA, resulting in a joint latent data model. A qualitative and quantitative validation of the topics based on ground-truth data demonstrate that the land-cover categories of the regions are correctly classified, outperforming the topics obtained using individual single modality data.
elib-URL des Eintrags: | https://elib.dlr.de/119199/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Multisensor Earth Observation Image Classification Based on a Multimodal Latent Dirichlet Allocation Model | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | März 2018 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 15 | ||||||||||||||||
DOI: | 10.1109/LGRS.2018.2794511 | ||||||||||||||||
Seitenbereich: | Seiten 459-463 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Image fusion, Land-cover classification, Multimodal latent Dirichlet allocation (mmLDA), Multispectral images, Synthetic aperture radar (SAR) images | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||||||||||
Hinterlegt am: | 06 Mär 2018 12:24 | ||||||||||||||||
Letzte Änderung: | 08 Nov 2023 14:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags