elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Understanding Kelvin-Helmholtz Instability in Paraffin-Based Hybrid Rocket Fuels

Petrarolo, Anna und Kobald, Mario und Schlechtriem, S. (2018) Understanding Kelvin-Helmholtz Instability in Paraffin-Based Hybrid Rocket Fuels. Experiments in Fluids, 59 (4), Seite 62. Springer Nature. doi: 10.1007/s00348-018-2516-1. ISSN 0723-4864.

[img] PDF
2MB

Offizielle URL: https://link.springer.com/article/10.1007%2Fs00348-018-2516-1

Kurzfassung

Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin--Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.

elib-URL des Eintrags:https://elib.dlr.de/119134/
Dokumentart:Zeitschriftenbeitrag
Titel:Understanding Kelvin-Helmholtz Instability in Paraffin-Based Hybrid Rocket Fuels
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Petrarolo, AnnaAnna.Petrarolo (at) dlr.dehttps://orcid.org/0000-0002-2291-2874NICHT SPEZIFIZIERT
Kobald, Mariomario.kobald (at) dlr.dehttps://orcid.org/0000-0002-1708-3944NICHT SPEZIFIZIERT
Schlechtriem, S.Stefan.Schlechtriem (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:5 März 2018
Erschienen in:Experiments in Fluids
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:59
DOI:10.1007/s00348-018-2516-1
Seitenbereich:Seite 62
Verlag:Springer Nature
ISSN:0723-4864
Status:veröffentlicht
Stichwörter:Paraffin fuels, hybrid Propulsion, optical Investigation, POD, ICA, Oxygen, liquefying fuel
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Antriebsystemtechnik - Raketenantriebtests (alt)
Standort: Lampoldshausen
Institute & Einrichtungen:Institut für Raumfahrtantriebe > Treibstoffe
Hinterlegt von: Kobald, Dr. Mario
Hinterlegt am:06 Mär 2018 07:55
Letzte Änderung:02 Nov 2023 11:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.