Yao, Wei und Marmanis, Dimitrios und Datcu, Mihai (2017) Semantic segmentation using the fully convolutional networks for SAR and optical image pairs. In: Proceedings of the 2017 conference on Big Data from Spcace (BiDS'17), Seiten 289-292. Big Data from Space (BiDS’17), 2017-11-28 - 2017-11-30, Toulouse, Frankreich. doi: 10.2760/383579.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://earth.esa.int/web/guest/events/all-events/-/article/conference-on-big-data-from-space-bids-17
Kurzfassung
Semantic segmentation for synthetic aperture radar (SAR) imagery is a rarely touched area, due to the specific image characteristics of SAR images. In this research, we propose a dataset which consists of three data sources: TerraSAR-X images, Google Earth images and OpenStreetMap data, with the purpose of performing SAR and optical image semantic segmentation. By using fully convolutional networks and deep residual networks with pre-trained weights, we investigate the accuracy and mean IOU values of semantic segmentation for both SAR and optical image patches. The best segmentation accuracy results for SAR and optical data are around 60% and 82%. Moreover, we study SAR models by combining multiple data sources: Google Earth images and OpenStreetMap data.
elib-URL des Eintrags: | https://elib.dlr.de/118661/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Semantic segmentation using the fully convolutional networks for SAR and optical image pairs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2017 | ||||||||||||||||
Erschienen in: | Proceedings of the 2017 conference on Big Data from Spcace (BiDS'17) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.2760/383579 | ||||||||||||||||
Seitenbereich: | Seiten 289-292 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Deep learning, Semantic segmentation, TerraSAR-X, Google Earth, convolutional Networks, OpenStreetMap | ||||||||||||||||
Veranstaltungstitel: | Big Data from Space (BiDS’17) | ||||||||||||||||
Veranstaltungsort: | Toulouse, Frankreich | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 November 2017 | ||||||||||||||||
Veranstaltungsende: | 30 November 2017 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 01 Feb 2018 19:10 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags