elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching

Merkle, Nina Marie und Auer, Stefan und Müller, Rupert und Reinartz, Peter (2018) Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (6), Seiten 1811-1820. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2018.2803212. ISSN 1939-1404.

[img] PDF
2MB

Offizielle URL: https://ieeexplore.ieee.org/document/8328024/?arnumber=8328024&source=authoralert

Kurzfassung

Tasks such as the monitoring of natural disasters or the detection of change highly benefit from complementary information about an area or a specific object of interest. The required information is provided by fusing high accurate co-registered and geo-referenced datasets. Aligned high resolution optical and synthetic aperture radar (SAR) data additionally enables an absolute geo-location accuracy improvement of the optical images by extracting accurate and reliable ground control points (GCPs) from the SAR images. In this paper we investigate the applicability of a deep learning based matching concept for the generation of precise and accurate GCPs from SAR satellite images by matching optical and SAR images. To this end, conditional generative adversarial networks (cGANs) are trained to generate SAR-like image patches from optical images. For training and testing, optical and SAR image patches are extracted from TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe. The artificially generated patches are then used to improve the conditions for three known matching approaches based on normalized cross-correlation (NCC), SIFT and BRISK, which are normally not usable for the matching of optical and SAR images. The results validate that a NCC, SIFT and BRISK based matching greatly benefit, in terms of matching accuracy and precision, from the use of the artificial templates. The comparison with two state-of-the-art optical and SAR matching approaches shows the potential of the proposed method but also revealed some challenges and the necessity for further developments.

elib-URL des Eintrags:https://elib.dlr.de/118413/
Dokumentart:Zeitschriftenbeitrag
Titel:Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Merkle, Nina MarieNina.Merkle (at) dlr.dehttps://orcid.org/0000-0003-4177-1066NICHT SPEZIFIZIERT
Auer, StefanStefan.Auer (at) dlr.dehttps://orcid.org/0000-0001-9310-2337NICHT SPEZIFIZIERT
Müller, Rupertrupert.mueller (at) dlr.dehttps://orcid.org/0000-0002-3288-5814NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:2018
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1109/JSTARS.2018.2803212
Seitenbereich:Seiten 1811-1820
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTIEEE Geoscience & Remote Sensing SocietyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Conditional generative adversarial networks (cGANs), multi-sensor image matching, artificial image generation, synthetic aperture radar (SAR), optical satellite images
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Merkle, Nina
Hinterlegt am:30 Jan 2018 09:10
Letzte Änderung:03 Nov 2023 10:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.