Merkle, Nina Marie und Auer, Stefan und Müller, Rupert und Reinartz, Peter (2018) Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (6), Seiten 1811-1820. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2018.2803212. ISSN 1939-1404.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8328024/?arnumber=8328024&source=authoralert
Kurzfassung
Tasks such as the monitoring of natural disasters or the detection of change highly benefit from complementary information about an area or a specific object of interest. The required information is provided by fusing high accurate co-registered and geo-referenced datasets. Aligned high resolution optical and synthetic aperture radar (SAR) data additionally enables an absolute geo-location accuracy improvement of the optical images by extracting accurate and reliable ground control points (GCPs) from the SAR images. In this paper we investigate the applicability of a deep learning based matching concept for the generation of precise and accurate GCPs from SAR satellite images by matching optical and SAR images. To this end, conditional generative adversarial networks (cGANs) are trained to generate SAR-like image patches from optical images. For training and testing, optical and SAR image patches are extracted from TerraSAR-X and PRISM image pairs covering greater urban areas spread over Europe. The artificially generated patches are then used to improve the conditions for three known matching approaches based on normalized cross-correlation (NCC), SIFT and BRISK, which are normally not usable for the matching of optical and SAR images. The results validate that a NCC, SIFT and BRISK based matching greatly benefit, in terms of matching accuracy and precision, from the use of the artificial templates. The comparison with two state-of-the-art optical and SAR matching approaches shows the potential of the proposed method but also revealed some challenges and the necessity for further developments.
elib-URL des Eintrags: | https://elib.dlr.de/118413/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Exploring the Potential of Conditional Adversarial Networks for Optical and SAR Image Matching | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2018.2803212 | ||||||||||||||||||||
Seitenbereich: | Seiten 1811-1820 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Conditional generative adversarial networks (cGANs), multi-sensor image matching, artificial image generation, synthetic aperture radar (SAR), optical satellite images | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Merkle, Nina | ||||||||||||||||||||
Hinterlegt am: | 30 Jan 2018 09:10 | ||||||||||||||||||||
Letzte Änderung: | 03 Nov 2023 10:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags