Kuschk, Georg und d'Angelo, Pablo und Gaudrie, David und Reinartz, Peter und Cremers, Daniel (2017) Spatially Regularized Fusion of Multiresolution Digital Surface Models. IEEE Transactions on Geoscience and Remote Sensing, 55 (3), Seiten 1477-1488. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2016.2625040. ISSN 0196-2892.
PDF
10MB |
Offizielle URL: http://ieeexplore.ieee.org/document/7752839/?reload=true
Kurzfassung
In this paper, we propose an algorithm for robustly fusing digital surface models (DSMs) with different ground sampling distances and confidences, using explicit surface priors to obtain locally smooth surface models. Robust fusion of the DSMs is achieved by minimizing the L1-distance of each pixel of the solution to each input DSM. This approach is similar to a pixel-wise median, and most outliers are discarded. We further incorporate local planarity assumption as an additional constraint to the optimization problem, thus reducing the noise compared with pixel-wise approaches. The optimization is also inherently able to include weights for the input data, therefore allowing to easily integrate invalid areas, fuse multiresolution DSMs, and to weight the input data. The complete optimization problem is constructed as a variational optimization problem with a convex energy functional, such that the solution is guaranteed to converge toward the global energy minimum. An efficient solver is presented to solve the optimization in reasonable time, e.g., running in real time on standard computer vision camera images. The accuracy of the algorithms and the quality of the resulting fused surface models are evaluated using synthetic data sets and spaceborne data sets from different optical satellite sensors.
elib-URL des Eintrags: | https://elib.dlr.de/118291/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Spatially Regularized Fusion of Multiresolution Digital Surface Models | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | März 2017 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 55 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2016.2625040 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1477-1488 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Signal to noise ratio, Optimization, Optical sensors, Image resolution, Robustness, Surface reconstruction | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | d'Angelo, Dr. Pablo | ||||||||||||||||||||||||
Hinterlegt am: | 18 Jan 2018 13:45 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Jul 2019 20:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags