Yao, Wei und Marmanis, Dimitrios und Datcu, Mihai (2017) Semantic segmentation using deep neural networks for SAR and optical image pairs. Big data from space 2017, 2017-11-28 - 2017-11-30, Toulouse, France.
PDF
936kB |
Kurzfassung
Semantic segmentation for synthetic aperture radar (SAR) imagery is a rarely touched area, due to the specific image characteristics of SAR images. In this research, we propose a dataset which consists of three data sources: TerraSAR-X images, Google Earth images and OpenStreetMap data, with the purpose of performing SAR and optical image semantic segmentation. By using fully convolutional networks and deep residual networks with pre-trained weights, we investigate the accuracy and mean IOU values of semantic segmentation for both SAR and optical image patches. The best Segmentation accuracy results for SAR and optical data are around 74% and 82%. Moreover, we study SAR models by combining multiple data sources: Google Earth images and OpenStreetMap data.
elib-URL des Eintrags: | https://elib.dlr.de/117829/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Semantic segmentation using deep neural networks for SAR and optical image pairs | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2017 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Deep learning, Semantic segmentation, TerraSAR-X, Google Earth, OpenStreetMap | ||||||||||||||||
Veranstaltungstitel: | Big data from space 2017 | ||||||||||||||||
Veranstaltungsort: | Toulouse, France | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 28 November 2017 | ||||||||||||||||
Veranstaltungsende: | 30 November 2017 | ||||||||||||||||
Veranstalter : | ESA | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Yao, Wei | ||||||||||||||||
Hinterlegt am: | 08 Jan 2018 13:11 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags