Hashemi, M. und Rabus, B. und Lehner, Susanne (2018) Ocean feature extraction from SAR Quicklook Imagery using Convolutional Neural Networks. EUSAR 2018, 2018-06-04 - 2018-06-07, Aachen, Deutschland.
PDF
525kB |
Kurzfassung
We used a large dataset of Sentinel-1 and TerraSAR-X quicklook images downloaded from the internet in order to classify the imagery into different classes of subscenes including: open ocean, land, sea ice and ships using Convolutional Neural Network (CNN) classifiers. We construct a training dataset of subscenes of the images using visual inspection and AIS data. We then focused on the open ocean scenes acquired under different environmental conditions to classify them into different wind speed and sea state categories. We compare the results to wind speed, sea state model results and NOAA buoy measurements. In order to find the subscenes containing ships, icebergs and oil slicks we further utilize the CNN over open ocean and coastal SAR scenes. Statistics on validation is given using categorical cross entropy loss. In addition several high resolution images are used in order to test the performance of the trained Convolutional Neural Network. This study will help to retrieve such images relevant to maritime investigations of ships, oil and environmental parameters using big data methods.
elib-URL des Eintrags: | https://elib.dlr.de/117706/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Ocean feature extraction from SAR Quicklook Imagery using Convolutional Neural Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2018 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Synthetic Aperture Radar, Ocean Features, TerraSAR-X, Sentinel-1, Convolutional Neural Networks | ||||||||||||||||
Veranstaltungstitel: | EUSAR 2018 | ||||||||||||||||
Veranstaltungsort: | Aachen, Deutschland | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 4 Juni 2018 | ||||||||||||||||
Veranstaltungsende: | 7 Juni 2018 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 21 Dez 2017 16:00 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags