Hackel, Stefan und Montenbruck, Oliver und Steigenberger, Peter und Balss, Ulrich und Gisinger, Christoph und Eineder, Michael (2016) Model improvements and validation of TerraSAR-X precise orbit determination. Journal of Geodesy, 91 (5), Seiten 547-562. Springer. doi: 10.1007/s00190-016-0982-x. ISSN 0949-7714.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: http://link.springer.com/article/10.1007/s00190-016-0982-x
Kurzfassung
The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk–dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from −3±17 to 2±13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from the 2012–2014 period. The radar range bias is reduced from −10.3 to −6.1 mm with the updated orbit solutions, which coincides with the reduced standard deviation of the SLR residuals. The improvements are mainly driven by the satellite macro-model for the purpose of solar radiation pressure modeling, improved atmospheric density models, and the use of state-of-the-art gravity field models.
elib-URL des Eintrags: | https://elib.dlr.de/117542/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Model improvements and validation of TerraSAR-X precise orbit determination | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 3 Dezember 2016 | ||||||||||||||||||||||||||||
Erschienen in: | Journal of Geodesy | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 91 | ||||||||||||||||||||||||||||
DOI: | 10.1007/s00190-016-0982-x | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 547-562 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
ISSN: | 0949-7714 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | atmospheric density models, radar ranging, reduced-dynamic orbit determination, satellite macro-model, solar radiation pressure | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Infrastruktur und Unterstützung für Raumflugbetrieb (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Raumflugbetrieb und Astronautentraining > Raumflugtechnologie | ||||||||||||||||||||||||||||
Hinterlegt von: | Hackel, Stefan | ||||||||||||||||||||||||||||
Hinterlegt am: | 06 Mär 2018 10:51 | ||||||||||||||||||||||||||||
Letzte Änderung: | 03 Nov 2023 07:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags