elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Increasing the Statistical Significance for MODIS Active Fire Hotspots in Portugal Using One-Class Support Vector Machines

Vikram, Devi Eswaramoorthy (2017) Increasing the Statistical Significance for MODIS Active Fire Hotspots in Portugal Using One-Class Support Vector Machines. Masterarbeit, Technische Universität München.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Forest fires are an important part of the environment as they cause ecological and economical damage, apart from claiming numerous lives. Support Vector Machines (SVMs) coupled with satellite images and sensor information have been proven to aid in the prediction of forest fires and the extent of burnt areas. The National Aeronautics and Space Administration's (NASA) moderate resolution imaging spectroradiometer (MODIS) provides an active fire product in the form of spatial hotspots using an enhanced Collection 6 algorithm since 2015, which basically consists of active fires. This study proposes a one-class SVM based approach to identify the hotspots that are more likely to be a part of large forest fires. For this, Hotspots in Portugal in the time period 2000-2016 were analysed. 38 known large forest fire events across Portugal were used to train the VM model. As expected, it was observed that these forest fires generally occurred in spatio-temporal clusters when compared to the overall hotspot population. The input parameters for the model were based on spatial and temporal clustering behaviour of the hotspots, external factors such as land cover, temperature, elevation etc. and attributes from the Collection 6 data such as latitude, fire detection confidence, fire radiative power and brightness temperatures. Leave-one-out cross-validation and hold-out validation techniques were used to validate the model. As a result, 79.8 % of the overall hotspots from 2000 to 2017 were classified as "true" forest fires. These "true" detections were analysed over time. This led to the identification of other forest fire events that were not included in the training or the test dataset for the model. The results also showed that the model was more sensitive to land cover, temperature, FRP and cluster parameters when compared to other parameters. This proves that the model is responsive to active fires occurring on forest areas and also to spatio- emporal clustering. It is assumed that this approach could be successfully adapted to other study areas as there are no study area dependent input parameters used, except for the latitude, which needs to be taken into consideration. The model can be extended by using other input parameters such as humidity, slope etc. In addition, assigning higher weightage to the more influential parameters such as land cover and spatio-temporal clustering could lead to better results.

elib-URL des Eintrags:https://elib.dlr.de/117332/
Dokumentart:Hochschulschrift (Masterarbeit)
Zusätzliche Informationen:Die Arbeit wurde von Christian Strobl betreut
Titel:Increasing the Statistical Significance for MODIS Active Fire Hotspots in Portugal Using One-Class Support Vector Machines
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vikram, Devi EswaramoorthyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Juni 2017
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:75
Status:veröffentlicht
Stichwörter:One-Class Support Vector Machines, MODIS Collection 6 Active Fire Product, MOD14, MYD14, Spatio-Temporal Clustering
Institution:Technische Universität München
Abteilung:Department of Cartography
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geoprodukte u. - Systeme, Services
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Strobl, Dr.rer.nat. Christian
Hinterlegt am:14 Dez 2017 11:19
Letzte Änderung:18 Jan 2018 13:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.