Patelli, E. und Broggi, Matteo und Govers, Yves und Mottershead, J.E. (2017) Model Updating Strategy of the DLR-AIRMOD Test Structure. Procedia Engineering, 199, Seiten 978-983. Elsevier. doi: 10.1016/j.proeng.2017.09.221. ISSN 1877-7058.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://doi.org/10.1016/j.proeng.2017.09.221
Kurzfassung
Considerable progresses have been made in computer-aided engineering for the high fidelity analysis of structures and systems. Traditionally, computer models are calibrated using deterministic procedures. However, different analysts produce different models based on different modelling approximations and assumptions. In addition, identically constructed structures and systems show different characteristic between each other. Hence, model updating needs to take account modelling and test-data variability. Stochastic model updating techniques such as sensitivity approach and Bayesian updating are now recognised as powerful approaches able to deal with unavoidable uncertainty and variability. This paper presents a high fidelity surrogate model that allows to significantly reduce the computational costs associated with the Bayesian model updating technique. A set of Artificial Neural Networks are proposed to replace multi non-linear input-output relationships of finite element (FE) models. An application for updating the model parameters of the FE model of the DRL-AIRMOD structure is presented.
elib-URL des Eintrags: | https://elib.dlr.de/115963/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Model Updating Strategy of the DLR-AIRMOD Test Structure | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||
Erschienen in: | Procedia Engineering | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 199 | ||||||||||||||||||||
DOI: | 10.1016/j.proeng.2017.09.221 | ||||||||||||||||||||
Seitenbereich: | Seiten 978-983 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 1877-7058 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | model updating, artificial neural Networks, Bayesian; simulation | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Flugzeuge | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L AR - Aircraft Research | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugphysik (alt) | ||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aeroelastik > Strukturdynamik und aeroelastische Systemidentifikation | ||||||||||||||||||||
Hinterlegt von: | Grischke, Birgid | ||||||||||||||||||||
Hinterlegt am: | 14 Dez 2017 11:43 | ||||||||||||||||||||
Letzte Änderung: | 13 Jun 2023 14:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags