Schenk, Fabian und Fraundorfer, Friedrich (2017) Robust Edge-based Visual Odometry using Machine-Learned Edges. In: Proceedings IEEE/RSJ, Seiten 1-8. International Conference on Intelligent Robots and Systems (IROS) 2017, 2017-09-24 - 2017-09-28, Vancouver, Kanada.
|
PDF
10MB |
Kurzfassung
In this work, we present a real-time robust edgebased visual odometry framework for RGBD sensors (REVO). Even though our method is independent of the edge detection algorithm, we show that the use of state-of-the-art machinelearned edges gives significant improvements in terms of robustness and accuracy compared to standard edge detection methods. In contrast to approaches that heavily rely on the photo-consistency assumption, edges are less influenced by lighting changes and the sparse edge representation offers a larger convergence basin while the pose estimates are also very fast to compute. Further, we introduce a measure for tracking quality, which we use to determine when to insert a new key frame. We show the feasibility of our system on realworld datasets and extensively evaluate on standard benchmark sequences to demonstrate the performance in a wide variety of scenes and camera motions. Our framework runs in real-time on the CPU of a laptop computer and is available online.
| elib-URL des Eintrags: | https://elib.dlr.de/115764/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Robust Edge-based Visual Odometry using Machine-Learned Edges | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2017 | ||||||||||||
| Erschienen in: | Proceedings IEEE/RSJ | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Nein | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| Seitenbereich: | Seiten 1-8 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Robust Edge-based Visual Odometry, Machine-Learned Edges | ||||||||||||
| Veranstaltungstitel: | International Conference on Intelligent Robots and Systems (IROS) 2017 | ||||||||||||
| Veranstaltungsort: | Vancouver, Kanada | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 24 September 2017 | ||||||||||||
| Veranstaltungsende: | 28 September 2017 | ||||||||||||
| Veranstalter : | IEEE/RSJ | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||
| HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||
| DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
| Hinterlegt von: | Zielske, Mandy | ||||||||||||
| Hinterlegt am: | 01 Dez 2017 16:53 | ||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags