elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

Schumann, Ulrich und Mayer, Bernhard (2017) Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model. Atmospheric Chemistry and Physics, 17, Seiten 13833-13848. Copernicus Publications. doi: 10.5194/acp-17-13833-2017. ISSN 1680-7316.

[img] PDF (Paper)
2MB

Offizielle URL: https://www.atmos-chem-phys.net/17/13833/2017/

Kurzfassung

Earth’s surface temperature sensitivity to radiative forcing (RF) by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW) and longwave (LW) radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks). Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the time scales of energy transport by mixing and radiation. The time scales are derived for steady layered heating (ghost-forcing) and for a transient contrail cirrus case. The radiative time scales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA) and different radiative heating rate profiles in the troposphere, the local surface-temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

elib-URL des Eintrags:https://elib.dlr.de/115731/
Dokumentart:Zeitschriftenbeitrag
Titel:Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schumann, UlrichDLR, IPAhttps://orcid.org/0000-0001-5255-6869NICHT SPEZIFIZIERT
Mayer, Bernhardlmu münchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2017
Erschienen in:Atmospheric Chemistry and Physics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.5194/acp-17-13833-2017
Seitenbereich:Seiten 13833-13848
Verlag:Copernicus Publications
ISSN:1680-7316
Status:veröffentlicht
Stichwörter:cirrus, contrail cirrus, radiative forcing, climate change, surface temperature, radiation transfer, mixing, efficacy
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Klima, Wetter und Umwelt (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre
Hinterlegt von: Schumann, Prof.Dr.habil. Ulrich
Hinterlegt am:21 Nov 2017 12:44
Letzte Änderung:14 Nov 2023 12:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.