Mostegel, Christian und Prettenthaler, Rudolf und Fraundorfer, Friedrich und Bischof, Horst (2017) Scalable Surface Reconstruction from Point Clouds with Extreme Scale and Density Diversity. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Seiten 904-913. IEEE Xplore. CVPR 2017, 2017-07-21 - 2017-07-26, Honolulu. doi: 10.1109/CVPR.2017.268.
PDF
7MB |
Offizielle URL: http://cvpr2017.thecvf.com/program/main_conference
Kurzfassung
In this paper we present a scalable approach for robustly computing a 3D surface mesh from multi-scale multi-view stereo point clouds that can handle extreme jumps of point density (in our experiments three orders of magnitude). The backbone of our approach is a combination of octree data partitioning, local Delaunay tetrahedralization and graph cut optimization. Graph cut optimization is used twice, once to extract surface hypotheses from local Delaunay tetrahedralizations and once to merge overlapping surface hypotheses even when the local tetrahedralizations do not share the same topology. This formulation allows us to obtain a constant memory consumption per sub-problem while at the same time retaining the density independent Interpolation properties of the Delaunay-based optimization. On multiple public datasets, we demonstrate that our Approach is highly competitive with the state-of-the-art in terms of accuracy, completeness and outlier resilience. Further, we demonstrate the multi-scale potential of our approach by processing a newly recorded dataset with 2 billion Points and a point density variation of more than four orders of magnitude - requiring less than 9GB of RAM per process.
elib-URL des Eintrags: | https://elib.dlr.de/115664/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Scalable Surface Reconstruction from Point Clouds with Extreme Scale and Density Diversity | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||
Erschienen in: | 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/CVPR.2017.268 | ||||||||||||||||||||
Seitenbereich: | Seiten 904-913 | ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | 3D surface mesh, multi-scale multi-view stereo point clouds, octree data | ||||||||||||||||||||
Veranstaltungstitel: | CVPR 2017 | ||||||||||||||||||||
Veranstaltungsort: | Honolulu | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 21 Juli 2017 | ||||||||||||||||||||
Veranstaltungsende: | 26 Juli 2017 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||
Hinterlegt am: | 29 Nov 2017 17:39 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags