Dahms, Thorsten und Kumar-Babu, Dinesh und Borg, Erik und Schmidt, Marco und Conrad, Christopher (2017) Derivation of biophysical parameters from fused remote sensing data. IGARSS, 2017-07-23 - 2017-07-28, Dallas, Texas.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/document/8127970/
Kurzfassung
Recent launches of optical space-borne remote sensing systems with high spatial resolution, high temporal revisit frequency and constant viewing angles (e.g.: Venµs, Sentinel-2) will fortify the potential of remote sensing applications in the context of agricultural monitoring (e.g.: the derivation of biophysical parameters). The practicality of this kind of remote sensing data is limited by tile and cloud coverage. Spatial temporal image fusion techniques (e.g: STARFM) can be used to combine the data from different remote sensing sensor systems to overcome these challenges. In order to investigate the reliability of synthesized remote sensing data in agricultural monitoring, we evaluated the quality of the prediction of FPAR and LAI on maize. In this context, we used synthetic daily Landsat-like data and a RandomForest model to predict FPAR and LAI for the entire growing period in 2015. The evaluation of the biophysical time series was concluded using a weekly to bi weekly ground measurements in different phenological stages of the maize plant. The quality assessment of the entire growing period revealed the high potential of synthetic remote sensing data for agricultural monitoring. The quality of results range between R² = 0.68; RMSE = 0.79 (LAI) and R² = 0.76; RMSE = 0.12 (FPAR).
elib-URL des Eintrags: | https://elib.dlr.de/115662/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Derivation of biophysical parameters from fused remote sensing data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 4374-4377 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | remote sensing, biophysical Parameters, FPAR | ||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS | ||||||||||||||||||||||||
Veranstaltungsort: | Dallas, Texas | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 Juli 2017 | ||||||||||||||||||||||||
Veranstaltungsende: | 28 Juli 2017 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment | ||||||||||||||||||||||||
Hinterlegt von: | Wöhrl, Monika | ||||||||||||||||||||||||
Hinterlegt am: | 21 Nov 2017 13:35 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags