Broggi, Mateo und Faes, Matthias und Patelli, E. und Govers, Yves und Moens, David und Beer, Michael (2017) Comparison between Bayesian and interval uncertainty quantification: application to the AIRMOD test structure. In: IEEE SSCI 2017 - Symposium Series on Computational Intelligence. IEEE SSCI 2017 - Symposium Series on Computational Intelligence, 2017-11-27 - 2017-12-01, Honululu, Hawaii, USA.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
This paper concerns the comparison of two inverse methods for the quantification of uncertain model parameters, based on independent measurement data of the model’s responses. Specifically, Bayesian inference is compared to a novel method for the quantification of multivariate interval uncertainty. This comparison is made by applying both methods to the AIRMOD measurement data set, and comparing their results critically in terms of obtained information and computational expense. It is found that the results of the Bayesian identification provide less over-conservative bounds on the uncertainty in the responses of the AIRMOD model. Smthing about computational cost.
elib-URL des Eintrags: | https://elib.dlr.de/115579/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Comparison between Bayesian and interval uncertainty quantification: application to the AIRMOD test structure | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2017 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE SSCI 2017 - Symposium Series on Computational Intelligence | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | interval uncertainty, airmod test structure, parameters, bayesian | ||||||||||||||||||||||||||||
Veranstaltungstitel: | IEEE SSCI 2017 - Symposium Series on Computational Intelligence | ||||||||||||||||||||||||||||
Veranstaltungsort: | Honululu, Hawaii, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 27 November 2017 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 1 Dezember 2017 | ||||||||||||||||||||||||||||
Veranstalter : | IEEE Computational Intelligence Society | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Flugzeuge | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AR - Aircraft Research | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugphysik (alt) | ||||||||||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aeroelastik > Strukturdynamik und aeroelastische Systemidentifikation | ||||||||||||||||||||||||||||
Hinterlegt von: | Grischke, Birgid | ||||||||||||||||||||||||||||
Hinterlegt am: | 06 Dez 2017 15:47 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags