Kleinert, Matthias und Helmke, Hartmut und Siol, Gerald und Ehr, Heiko und Finke, Michael und Oualil, Youssef und Srinivasamurthy, Ajay (2017) Machine Learning of Controller Command Prediction Models from Recorded Radar Data and Controller Speech Utterances. 7th SESAR Innovation Days (SIDs), 2017-11-28 - 2017-11-30, Belgrad, Serbien.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Recently, the project AcListant® related to automatic speech recognition has achieved command recognition error rates below 1.7% based on Assistant Based Speech Recognition (ABSR). One main issue to transfer ABSR from the laboratory to the ops-rooms is its costs of deployment. Currently each ABSR model must manually be adapted to the local environment due to e.g. different accents and models to predict possible controller commands. The Horizon 2020 funded project MALORCA (Ma-chine Learning of Speech Recognition Models for Controller As-sistance) proposes a general, cheap and effective solution to au-tomate this re-learning, adaptation and customization process to new environments, by taking advantage of the large amount of speech data available in the ATM world. This paper presents an algorithm which automatically learns a model to predict control-ler commands from recorded untranscribed controller utterances and the corresponding radar data. The trained model is validated against transcribed controller commands for Vienna and Prague approach. Command error rates are reduced from 4.1% to 0.9% for Prague approach and from 10.9% to 2.0% for Vienna ap-proach.
elib-URL des Eintrags: | https://elib.dlr.de/115564/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Machine Learning of Controller Command Prediction Models from Recorded Radar Data and Controller Speech Utterances | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | November 2017 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-8 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Speech Recognition, Assistant Based Speech Recognition, Unsupervised Learning, Command Prediction Model, MALORCA | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 7th SESAR Innovation Days (SIDs) | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Belgrad, Serbien | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 28 November 2017 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 30 November 2017 | ||||||||||||||||||||||||||||||||
Veranstalter : | SESAR Joint Undertaking (SJU) | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Effiziente Flugführung (alt) | ||||||||||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Flugführung > Lotsenassistenz | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Diederich, Kerstin | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 01 Dez 2017 09:12 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags