elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

On the Effect of Spatially Non-disjoint Training and Test Samples on Estimated Model Generalization Capabilities in Supervised Classification with Spatial Features

Geiß, Christian und Aravena Pelizari, Patrick und Schrade, Henrik und Brenning, Alexander und Taubenböck, Hannes (2017) On the Effect of Spatially Non-disjoint Training and Test Samples on Estimated Model Generalization Capabilities in Supervised Classification with Spatial Features. IEEE Geoscience and Remote Sensing Letters, 14 (11), Seiten 2008-2012. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2017.2747222. ISSN 1545-598X.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
5MB

Offizielle URL: http://ieeexplore.ieee.org/document/8046029/

Kurzfassung

In this letter, we establish two sampling schemes to select training and test sets for supervised classification. We do this in order to investigate whether estimated generalization capabilities of learned models can be positively biased from the use of spatial features. Numerous spatial features impose homogeneity constraints on the image data, whereby a spatially connected set of image elements is attributed identical feature values. In addition to a frequent occurrence of intrinsic spatial autocorrelation, this leads to extrinsic spatial autocorrelation with respect to the image data. The first sampling scheme follows a spatially random partitioning into training and test sets. In contrast to that, the second strategy implements a spatially disjoint partitioning, which considers in particular topological constraints that arise from the deployment of spatial features. Experimental results are obtained from multi- and hyperspectral acquisitions over urban environments. They underline that a large share of the differences between estimated generalization capabilities obtained with the spatially disjoint and non-disjoint sampling strategies can be attributed to the use of spatial features, whereby differences increase with an increasing size of the spatial neighborhood considered for computing a spatial feature. This stresses the necessity of a proper spatial sampling scheme for model evaluation to avoid overoptimistic model assessments.

elib-URL des Eintrags:https://elib.dlr.de/115167/
Dokumentart:Zeitschriftenbeitrag
Titel:On the Effect of Spatially Non-disjoint Training and Test Samples on Estimated Model Generalization Capabilities in Supervised Classification with Spatial Features
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Aravena Pelizari, Patrickpatrick.aravenapelizari (at) dlr.dehttps://orcid.org/0000-0003-0984-4675NICHT SPEZIFIZIERT
Schrade, Henrikhenrik.schrade (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brenning, Alexanderalexander.brenning (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:November 2017
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/lgrs.2017.2747222
Seitenbereich:Seiten 2008-2012
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Hyperspectral images, model generalization capability, morphological profiles (MPs), multispectral images, random forests (RFs), spatial features, supervised classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Sicherheitsrelevante Erdbeobachtung, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Geiß, Christian
Hinterlegt am:09 Nov 2017 09:52
Letzte Änderung:02 Nov 2023 13:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.