Perez-Ortiz, M. und Duran-Rosal, A. und Gutierrez, P.J. und Sanchez-Monedero, J. und Nikolaou, Athanasia und Fernandez-Navarro, F. und Hervas-Martinez, C. (2017) On the use of evolutionary time series analysis for segmenting paleoclimate data. Neurocomputing. Elsevier. doi: 10.1016/j.neucom.2016.11.101. ISSN 0925-2312.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0925231217315345
Kurzfassung
Recent studies propose that different dynamical systems, such as climate, ecological and financial systems, among others, present critical transition points named to as tipping points (TPs). Climate TPs can severely affect millions of lives on Earth so that an active scientific community is working on finding early warning signals. This paper deals with the development of a time series segmentation algorithm for paleoclimate data in order to find segments sharing common statistical patterns. The proposed algorithm uses a clustering-based approach for evaluating the solutions and six statistical features, most of which have been previously considered in the detection of early warning signals in paleoclimate TPs. Due to the limitations of classical statistical methods, we propose the use of a genetic algorithm to automatically segment the series, together with a method to compare the segmentations. The final segments provided by the algorithm are used to construct a prediction model, whose promising results show the importance of segmentation for improving the understanding of a time series.
elib-URL des Eintrags: | https://elib.dlr.de/114768/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Zusätzliche Informationen: | Bisher nur online erschienen. | ||||||||||||||||||||||||||||||||
Titel: | On the use of evolutionary time series analysis for segmenting paleoclimate data. | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | September 2017 | ||||||||||||||||||||||||||||||||
Erschienen in: | Neurocomputing | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.neucom.2016.11.101 | ||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0925-2312 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Time series segmentation, Genetic algorithms, Clustering, Paleoclimate data, Tipping points, Abrupt climate change, | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung, R - Exploration des Sonnensystems | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Nikolaou, Athanasia | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 10 Nov 2017 12:42 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 06 Sep 2019 15:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags