elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

AMARO-autonomous real-time detection of moving maritime objects: introducing a flight experiment for an on-board ship detection system

Schwenk, Kurt und Willburger, Katharina A. M. und Pless, Sebastian (2017) AMARO-autonomous real-time detection of moving maritime objects: introducing a flight experiment for an on-board ship detection system. In: Earth Resources and Environmental Remote Sensing/GIS Applications VIII, 10428, Seite 1042808. SPIE Digital Library. Earth Resources and Environmental Remote Sensing/GIS Applications VIII, 2017-09-11 - 2017-09-14, Warschau, Polen. doi: 10.1117/12.2277991.

[img] PDF - Nur DLR-intern zugänglich
876kB

Offizielle URL: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10428/1042808/Amaro-autonomous-real-time-detection-of-moving-maritime-objects/10.1117/12.2277991.full

Kurzfassung

Motivated by politics and economy, the monitoring of the world wide ship traffic is a field of high topicality. To detect illegal activities like piracy, illegal fishery, ocean dumping and refugee transportation is of great value. The analysis of satellite images on the ground delivers a great contribution to situation awareness. However, for many applications the up-to-dateness of the data is crucial. With ground based processing, the time between image acquisition and delivery of the data to the end user is in the range of several hours. The highest influence to the duration of ground based processing is the delay caused by the transmission of the large amount of image data from the satellite to the processing centre on the ground. One expensive solution to this issue is the usage of data relay satellites systems like EDRS. Another approach is to analyse the image data directly on-board of the satellite. Since the product data (e.g. ship position, heading, velocity, characteristics) is very small compared to the input image data, real-time connections provided by satellite telecommunication services like Iridium or Orbcomm can be used to send small packets of information directly to the end user without significant delay. The AMARO (Autonomous real-time detection of moving maritime objects) project at DLR is a feasibility study of an on-board ship detection system involving a real-time low bandwidth communication. The operation of a prototype on-board ship detection system will be demonstrated on an airborne platform. In this article, the scope, aim and design of a flight experiment for an on-board ship detection system scheduled for mid of 2018 is presented. First, the scope and the constraints of the experiment are explained in detail. The main goal is to demonstrate the operability of an automatic ship detection system on board of an airplane. For data acquisition the optical high resolution DLR MACS-MARE camera (VIS/NIR) is used. The system will be able to send product data, like position, size and a small image of the ship directly to the user’s smart-phone by email. The time between the acquisition of the image data and the delivery of the product data to the end-user is aimed to be less than three minutes. For communication, the SMS-like Iridium Short Burst Data (SBD) Service was chosen, providing a message size of around 300 Bytes. Under optimal sending/receiving conditions, messages can be transmitted bidirectional every 20 seconds. Due to the very small data bandwidth, not all product data may be transmittable at once, for instance, when flying over busy ships traffic zones. Therefore the system offers two services: a query and a push service. With the query service the end user can explicitly request data of a defined location and fixed time period by posting queries in an SQL-like language. With the push service, events can be predefined and messages are received automatically, if and when the event occurs. Finally, the hardware set-up, details of the ship detection algorithms and the current status of the experiment is presented.

elib-URL des Eintrags:https://elib.dlr.de/114722/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:AMARO-autonomous real-time detection of moving maritime objects: introducing a flight experiment for an on-board ship detection system
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schwenk, Kurtkurt.schwenk (at) dlr.dehttps://orcid.org/0000-0002-4305-9702NICHT SPEZIFIZIERT
Willburger, Katharina A. M.katharina.willburger (at) dlr.dehttps://orcid.org/0000-0002-1191-7979NICHT SPEZIFIZIERT
Pless, Sebastiansebastian.pless (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2017
Erschienen in:Earth Resources and Environmental Remote Sensing/GIS Applications VIII
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:10428
DOI:10.1117/12.2277991
Seitenbereich:Seite 1042808
Verlag:SPIE Digital Library
Status:veröffentlicht
Stichwörter:ship detection, onboard, flight experiment, real time service, iridium
Veranstaltungstitel:Earth Resources and Environmental Remote Sensing/GIS Applications VIII
Veranstaltungsort:Warschau, Polen
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 September 2017
Veranstaltungsende:14 September 2017
Veranstalter :International Society for Optics and Photonics (SPIE)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Sicherheitsrelevante Erdbeobachtung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining > Raumflugtechnologie
Institut für Optische Sensorsysteme
Hinterlegt von: Götz, Katharina
Hinterlegt am:20 Okt 2017 11:47
Letzte Änderung:24 Apr 2024 20:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.