Deckers, Niklas und Yildirim, Mehmet und Reulke, Ralf (2017) Sensor Fusion-Based Learning for the Improvement of Person Segmentation by Means of a Low-Resolution Thermal Infrared Array Sensor. ACM New York, NY, USA. International Conference on Computer Graphics and Digital Image Processing, 2017-07-02 - 2017-07-04, Prague. doi: 10.1145/3110224.3110237. ISBN 978-1-4503-5236-9.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: http://dx.doi.org/10.1145/3110224.3110237
Kurzfassung
Low-resolution thermal infrared array sensors can be used to detect human bodies and motion. Segmentation and deriving features from the segmented shape using such devices remains challenging. For improving and testing segmentation results, a sensor fusion approach using a Kinect sensor can be used to automatically receive ground-truth data. After performing a spatial calibration, experiments were performed to receive data for training and testing. A measure of difference to the ground-truth data is defined as error rate. Probability functions can be derived to determine whether a human is present, appearing or disappearing at a specific pixel. Optimization using Gaussian blur results in shapes ready for segmentation. A machine learning approach that uses conditional random fields on the ground-truth data generated by sensor fusion can be trained to reconstruct the ground-truth data. Testing different models showed that a spatial model that consists of a 4-connected neighborhood achieves better results than a temporal-spatial model.
elib-URL des Eintrags: | https://elib.dlr.de/114179/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Sensor Fusion-Based Learning for the Improvement of Person Segmentation by Means of a Low-Resolution Thermal Infrared Array Sensor | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2017 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1145/3110224.3110237 | ||||||||||||||||
Verlag: | ACM New York, NY, USA | ||||||||||||||||
ISBN: | 978-1-4503-5236-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Image and video acquisition, Camera calibration, Video segmentation | ||||||||||||||||
Veranstaltungstitel: | International Conference on Computer Graphics and Digital Image Processing | ||||||||||||||||
Veranstaltungsort: | Prague | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 2 Juli 2017 | ||||||||||||||||
Veranstaltungsende: | 4 Juli 2017 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Optische Sensorik - Theorie, Kalibration, Verifikation (alt) | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme | ||||||||||||||||
Hinterlegt von: | Reulke, Prof. Dr. Ralf | ||||||||||||||||
Hinterlegt am: | 21 Sep 2017 13:19 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags