elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

RADIATION PROTECTION FOR HUMAN SPACEFLIGHT

Hellweg, Christine E. und Baumstark-Khan, C. und Berger, Thomas (2017) RADIATION PROTECTION FOR HUMAN SPACEFLIGHT. ERRS-GBS-2017, 2017-09-17 - 2017-09-21, Essen, Germany.

[img] PDF
23kB

Kurzfassung

Space is a special workplace not only because of microgravity and the dependency on life support systems, but also owing to a constant considerable exposure to a natural radiation source, the cosmic radiation. Galactic cosmic rays (GCR) and solar cosmic radiation (SCR) are the primary sources of the radiation field in space. Whereas the GCR component comprises all particles from protons to heavy ions with energies up to 10¹¹ GeV, the SCR component ejected in Solar Energetic Particle events (SPE) consists mostly of protons, with a small percentage of heavy ions with energies up to several GeV. In low Earth orbit, the exposure to GCR is ~ 100-250 x higher compared to sea level. This factor rises to ~ 770 x for travel in the interplanetary space according to recent measurements on a journey to Mars. On a six month mission to the International Space Station (ISS), astronauts accumulate radiation doses exceeding the terrestrial occupational annual limit of 20 mSv by far. Astronauts experience a chronic whole body exposure with single energetic particles (electrons, protons, α-particles and heavy ions) of GCR. Contrary to other workplaces, the exposure on ISS or in future, on exploratory missions, continues after end of the working hours. The main concerns resulting from this exposure are increased risks of cancer, cataract, neurodegenerative effects and infertility. The effective dose as a pre-requisite for the radiation risk assessment was determined from organ doses measured within a human antrophomorphic phantom (MATROSKHA) which was exposed four times on the ISS. The ratio of organ to skin dose determined in these experiments allows estimation of the effective dose based on personal dosimeters of the astronauts. In interplanetary missions, in addition to the chronic, in average low dose GCR exposure at low dose rate, an acute whole body exposure to a high radiation dose at a high dose rate can occur during a SPE with the risk of acute radiation sickness. While shielding (e.g. in a radiation shelter) is effective against SPE protons and high dose exposures can be prevented by alerts based on active dose monitoring and sun activity data from satellites, the chronic GCR exposure cannot be shielded completely during space travel. Currently, radiation protection for astronauts is based on risk management including reduction of exposure (limiting mission duration, shielding of sleeping quarters) and risk surveillance by radiation monitoring (area monitoring, personal dosimeters, SPE alert). Age, gender, genetic predispositions and health and immune status are factors determining individual sensitivity and might be considered for crew selection for interplanetary missions. Ameliorative actions, including prophylactic treatment in order to lower the risk for chronic diseases, are under research and can be summarized as general recommendations for a healthy lifestyle. The treatment of acute radiation sickness encompasses e.g. administration of colony stimulating factors and symptomatic medication (antibiotics, anti-emetics, anti-diarrheic, anti-inflammatory drugs). Risk assessment for space radiation exposure is incomplete and many uncertainties concerning the biological effects of GCR remain. This is also reflected by the different exposure limits space agencies have set for their astronauts. To improve space radiation protection, active space radiation dosimeters, space weather prediction methods, and efficient shielding have to be developed and radiation measurements, including depth dose distribution in the human body, e.g. on the way to Moon and on the Moon surface are required. Mitigation of the effects of heavy ions is one of the most important challenges to be solved for the exploration of the solar system. The biological effects have to be further characterized and risk models should be updated accordingly.

elib-URL des Eintrags:https://elib.dlr.de/114093/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:RADIATION PROTECTION FOR HUMAN SPACEFLIGHT
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hellweg, Christine E.radiation biology department, institute of aerospace medicine, german aerospace center (dlr), cologne, germany; christine.hellweg (at) dlr.dehttps://orcid.org/0000-0002-2223-3580NICHT SPEZIFIZIERT
Baumstark-Khan, C.radiation biology department, institute of aerospace medicine, german aerospace center (dlr), cologne, germany; Christa.Baumstark-Khan (at) dlr.dehttps://orcid.org/0000-0002-9329-0128NICHT SPEZIFIZIERT
Berger, Thomasradiation biology department, institute of aerospace medicine, german aerospace center (dlr), cologne, germany; Thomas.Berger (at) dlr.dehttps://orcid.org/0000-0003-3319-5740NICHT SPEZIFIZIERT
Datum:2017
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:cosmic radiation, radiation protection, Human Spaceflight
Veranstaltungstitel:ERRS-GBS-2017
Veranstaltungsort:Essen, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 September 2017
Veranstaltungsende:21 September 2017
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Strahlenbiologie (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Strahlenbiologie
Hinterlegt von: Kopp, Kerstin
Hinterlegt am:25 Sep 2017 13:56
Letzte Änderung:24 Apr 2024 20:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.