Xu, Jian und Schüssler, Olena und Loyola, Diego und Romahn, Fabian und Doicu, Adrian (2017) A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (12), Seiten 5442-5457. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2017.2740168. ISSN 1939-1404.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: http://ieeexplore.ieee.org/document/8023748/
Kurzfassung
Identifying ozone profile shapes from nadir-viewing satellite sensors is a critical yet challenging task for accurate reconstruction of vertical distributions of ozone relevant to climate change and air quality. Motivated by the need to develop a methodology to fast, reliably, and efficiently exploit ozone distributions and inspired by the success of machine learning, this paper introduces a novel algorithm for estimating ozone profile shapes from satellite ultraviolet absorption spectra. The Full-Physics Inverse Learning Machine (FP-ILM) algorithm successfully characterizes ozone profile shapes using machine learning approaches. Its implementation mainly consists of a clustering process based on a semi-supervised agglomerative algorithm, a classification process based on full-physics radiative transfer simulations and a neural network (NN), and a profile scaling process based on a NN ensemble. The classification model has been trained with synthetic data generated by a forward model in conjunction with “smart sampling,” while the scaling model corresponding to each cluster requires total ozone information. The main innovation of FP-ILM is that, unlike conventional inversion methods, the ozone profile retrieval is formulated as a classification problem, leading to a noteworthy speed-up and accuracy when dealing with applications of satellite data. An outstanding retrieval performance with errors of less than 10% over 100–1 hPa has been obtained for synthetic measurements. Furthermore, the ozone profiles retrieved from the Global Ozone Monitoring Experiment–2 data using FP-ILM and the optimal estimation method reach an encouraging agreement (the differences are less than 6 Dobson Units or within 5%–20%).
elib-URL des Eintrags: | https://elib.dlr.de/113958/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | A novel ozone profile shape retrieval using full-physics inverse learning machine (FP-ILM) | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2017 | ||||||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 10 | ||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2017.2740168 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 5442-5457 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Atmospheric composition measurements, machine learning, ozone profiles | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Atmosphären- und Klimaforschung, R - Projekt Klimarelevanz von atmosphärischen Spurengasen, Aerosolen und Wolken | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||
Hinterlegt von: | Xu, Dr.-Ing. Jian | ||||||||||||||||||||||||
Hinterlegt am: | 08 Sep 2017 12:47 | ||||||||||||||||||||||||
Letzte Änderung: | 02 Nov 2023 12:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags