Griparis, Andreea und Faur, Daniela und Datcu, Mihai (2017) Quantitative Evaluation of the Feature Space Transformation Methods Used for Applications of Visual Semantic Clustering of EO Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (6), Seiten 2902-2909. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/jstars.2017.2681202. ISSN 1939-1404.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7938605
Kurzfassung
Data visualization guides the process of indexing and retrieval, strengthening the link between low-level image Features and high-level human understanding of image content. In this regard, we have described the semantic content of a multidimensional dataset using its descriptors to derive high-dimensional feature spaces. The dimensionality of these spaces is further reduced to three in order to provide a three-dimensional (3-D) representation of the dataset items. Our main challenge was to identify the Transformation that projects the high-dimensional feature set into a 3-D space preserving its semantic content. To overcome this issue, we have compared the efficiency of 11 feature space transformations: one feature selection algorithm and ten dimensionality reduction methods. As long as the dataset properties, during mapping, may differ depending on the chosen algorithm, the performance comparison of multiple algorithms is a difficult task. Therefore, three quantitative measures have been used: Trustworthiness, Continuity, and QNX - the number of points preserved in data neighborhoods over projection. Themapping algorithms have been applied to three remote sensing datasets achieved from different sensors: LANDSAT 7 ETM+ andWorldView-3.
elib-URL des Eintrags: | https://elib.dlr.de/113877/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Quantitative Evaluation of the Feature Space Transformation Methods Used for Applications of Visual Semantic Clustering of EO Images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2017 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 10 | ||||||||||||||||
DOI: | 10.1109/jstars.2017.2681202 | ||||||||||||||||
Seitenbereich: | Seiten 2902-2909 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Dimensionality, evaluation, exploration, multidimensional data, reduction, visualization | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 05 Sep 2017 18:27 | ||||||||||||||||
Letzte Änderung: | 15 Jun 2023 08:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags