Samadzadegan, Farhad und Hasani, Hadiseh und Reinartz, Peter (2017) Toward Optimum Fusion of Thermal Hyperspectral and Visible Images in Classification of Urban Area. Photogrammetric Engineering and Remote Sensing, 83 (4), Seiten 269-280. American Society for Photogrammetry and Remote Sensing. doi: 10.14358/pers.83.4.269. ISSN 0099-1112.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Recently, classification of urban area based on multi-sensor fusion has been widely investigated. In this paper, the potential of using visible (VIS) and thermal infrared (TIR) hyperspectral images fusion for classification of urban area is evaluated. For this purpose, comprehensive spatial-spectral feature space is generated which includes vegetation index, differential morphological profile (DMP), attribute profile (AP), texture, geostatistical features, structural feature set (SFS) and local statistical descriptors from both datasets in addition to original datasets. Although Support Vector Machine (SVM) is an appropriate tool in the classification of high dimensional feature space, its performance is significantly affected by its parameters and feature space. Cuckoo search (CS) optimization algorithm with mixed binary-continuous coding is proposed for feature selection and SVM parameter determination simultaneously. Moreover, the significance of each selected feature category in the classification of a specific object is verified. Accuracy assessment on two subsets shows that stacking of VIS and TIR bands can improve the classification performance to 87 percent and 82 percent for two subsets, compare to VIS image (72 percent and 80 percent) and TIR image (50 percent and 56 percent). However, the optimum results obtained based on the proposed method which gains 94 percent and 92 percent. Furthermore, results show that using TIR beside VIS image improves classification accuracy of roads and buildings in urban area.
elib-URL des Eintrags: | https://elib.dlr.de/113393/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Toward Optimum Fusion of Thermal Hyperspectral and Visible Images in Classification of Urban Area | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 4 April 2017 | ||||||||||||||||
Erschienen in: | Photogrammetric Engineering and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 83 | ||||||||||||||||
DOI: | 10.14358/pers.83.4.269 | ||||||||||||||||
Seitenbereich: | Seiten 269-280 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | American Society for Photogrammetry and Remote Sensing | ||||||||||||||||
ISSN: | 0099-1112 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | hyperspectral, visible Images, classification, urban area | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt), R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||
Hinterlegt am: | 07 Aug 2017 12:16 | ||||||||||||||||
Letzte Änderung: | 30 Jun 2023 10:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags