elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Influence of the Steady Deformation on Numerical Flutter Prediction for Highly Loaded and Flexible Fan Blades

Schuff, Matthias und Lengyel-Kampmann, Timea und Forsthofer, Nicolai (2017) Influence of the Steady Deformation on Numerical Flutter Prediction for Highly Loaded and Flexible Fan Blades. In: Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. ASME Turbo Expo 2017, 2017-06-26 - 2017-06-30, Charlotte, NC, USA. doi: 10.1115/GT2017-64027.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Deflections at off-design conditions can change the aeroelastic behavior of turbomachinery blades significantly. Therefore, steady-state deformations at each operating point cannot be neglected and need to be captured by CFD-CSM coupling. The implementation of an automated toolchain for the generation of a compressor map is presented. It includes steady FSC and is preceded by a flutter analysis. The CFD mesh is adapted to steady surface deflections via a mesh deformation using radial basis functions interpolation. Mode shape vibrations are computed at each operating point. Aerodynamic damping for each mode and IBPA is than assessed by unsteady RANS computations with time-linearization around the steady flow field. A detailed compressor map of a highly flexible CFRP fan, that was optimized within a multidisciplinary toolchain, is generated based on the geometry for design conditions. Elastic deformations affect a shift of the speedlines especially in near-choked conditions. At the surge line, some cases did not reach a steady-state deformation, oscillating between two deflections and indicating possible stall flutter. The impact of the steady deformation on predicting flutter boundaries for very elastic blades is pointed out by the comparison to a rigid setup. Significant differences are identified in the region of near-surged and stalled conditions and are due to large deformations, especially torsional deflections. The results of the underlying work of this paper will assist in identifying critical designs during optimization runs more quickly.

elib-URL des Eintrags:https://elib.dlr.de/113190/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Influence of the Steady Deformation on Numerical Flutter Prediction for Highly Loaded and Flexible Fan Blades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schuff, MatthiasMatthias.Schuff (at) dlr.dehttps://orcid.org/0000-0003-3276-2539NICHT SPEZIFIZIERT
Lengyel-Kampmann, Timeatimea.lengyel (at) dlr.dehttps://orcid.org/0009-0002-3320-7019NICHT SPEZIFIZIERT
Forsthofer, NicolaiNicolai.Forsthofer (at) dlr.dehttps://orcid.org/0009-0007-0230-2079NICHT SPEZIFIZIERT
Datum:Juni 2017
Erschienen in:Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1115/GT2017-64027
Status:veröffentlicht
Stichwörter:turbomachinery, flutter, CFD, CSM, FSC, toolchain
Veranstaltungstitel:ASME Turbo Expo 2017
Veranstaltungsort:Charlotte, NC, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 Juni 2017
Veranstaltungsende:30 Juni 2017
Veranstalter :The American Society of Mechanical Engineers (ASME)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugphysik (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Experimente
Hinterlegt von: Schuff, Matthias
Hinterlegt am:14 Jul 2017 11:39
Letzte Änderung:24 Apr 2024 20:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.