Bittner, Ksenia und Cui, Shiyong und Reinartz, Peter (2017) Building Extraction from Remote Sensing Data using fully convolutional Networks. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, XLII-1 (W1), Seiten 481-486. Copernicus Publications. ISPRS Hannover Workshop: HRIGI 17, 2017-06-06 - 2017-06-09, Hannover, Germany. doi: 10.5194/isprs-archives-XLII-1-W1-481-2017.
PDF
1MB |
Offizielle URL: http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-1-W1/481/2017/
Kurzfassung
Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
elib-URL des Eintrags: | https://elib.dlr.de/112900/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | Building Extraction from Remote Sensing Data using fully convolutional Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2017 | ||||||||||||||||
Erschienen in: | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | XLII-1 | ||||||||||||||||
DOI: | 10.5194/isprs-archives-XLII-1-W1-481-2017 | ||||||||||||||||
Seitenbereich: | Seiten 481-486 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | deep learning, DSM, fully convolutional networks, building footprint, binary classification, fully connected CRF | ||||||||||||||||
Veranstaltungstitel: | ISPRS Hannover Workshop: HRIGI 17 | ||||||||||||||||
Veranstaltungsort: | Hannover, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 6 Juni 2017 | ||||||||||||||||
Veranstaltungsende: | 9 Juni 2017 | ||||||||||||||||
Veranstalter : | ISPRS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt), R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 30 Jun 2017 13:29 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags