Hasani, Hadiseh und Samadzadegan, Farhad und Reinartz, Peter (2017) A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data. European Journal of Remote Sensing, 50 (1), Seiten 222-236. Taylor & Francis. doi: 10.1080/22797254.2017.1314179. ISSN 2279-7254.
PDF
3MB |
Offizielle URL: http://www.tandfonline.com/doi/full/10.1080/22797254.2017.1314179
Kurzfassung
One of the most sophisticated recent data fusions in remote sensing has involved the use of LiDAR and hyperspectral data. Feature-level fusion strategy is applied based on extraction of several recent proposed spectral and structural features from hyperspectral and LiDAR data, respectively. In order to optimize classification performance, feature selection and determination of classifier parameters are carried out simultaneously. Referring to complexity of search space, cuckoo search as a powerful metaheuristic optimization algorithm is applied. Experiments show that the proposed method can improve the overall classification accuracy up to 6% with respect to only hyperspectral imagery. The obtained results show the classification improvement for the tree, residential and commercial classes is about 4%, 21% and 35%, respectively.
elib-URL des Eintrags: | https://elib.dlr.de/112898/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A metaheuristic feature-level fusion strategy in classification of urban area using hyperspectral imagery and LiDAR data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 18 April 2017 | ||||||||||||||||
Erschienen in: | European Journal of Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 50 | ||||||||||||||||
DOI: | 10.1080/22797254.2017.1314179 | ||||||||||||||||
Seitenbereich: | Seiten 222-236 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||
ISSN: | 2279-7254 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Classification, urban area, hyperspectral, LiDAR, cuckoo search, SVM | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
Hinterlegt am: | 30 Jun 2017 14:24 | ||||||||||||||||
Letzte Änderung: | 14 Dez 2019 04:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags