elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data

Ottinger, Marco und Clauss, Kersten und Künzer, Claudia (2017) Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sensing, 9 (440), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs9050440. ISSN 2072-4292.

[img] PDF
5MB

Offizielle URL: http://www.mdpi.com/2072-4292/9/5/440

Kurzfassung

We present an earth observation based approach to detect aquaculture ponds in coastal areas with dense time series of high spatial resolution Sentinel-1 SAR data. Aquaculture is one of the fastest-growing animal food production sectors worldwide, contributes more than half of the total volume of aquatic foods in human consumption, and offers a great potential for global food security. The key advantages of SAR instruments for aquaculture mapping are their all-weather, day and night imaging capabilities which apply particularly to cloud-prone coastal regions. The different backscatter responses of the pond components (dikes and enclosed water surface) and aquaculture’s distinct rectangular structure allow for separation of aquaculture areas from other natural water bodies. We analyzed the large volume of free and open Sentinel-1 data to derive and map aquaculture pond objects for four study sites covering major river deltas in China and Vietnam. SAR image data were processed to obtain temporally smoothed time series. Terrain information derived from DEM data and accurate coastline data were utilized to identify and mask potential aquaculture areas. An open source segmentation algorithm supported the extraction of aquaculture ponds based on backscatter intensity, size and shape features. We were able to efficiently map aquaculture ponds in coastal areas with an overall accuracy of 0.83 for the four study sites. The approach presented is easily transferable in time and space, and thus holds the potential for continental and global mapping.

elib-URL des Eintrags:https://elib.dlr.de/112391/
Dokumentart:Zeitschriftenbeitrag
Titel:Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ottinger, MarcoMarco.Ottinger (at) dlr.dehttps://orcid.org/0000-0002-7336-1283NICHT SPEZIFIZIERT
Clauss, Kerstenkersten.clauss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Künzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Mai 2017
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:9
DOI:10.3390/rs9050440
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:aquaculture, SAR, Sentinel-1, time series, image Segmentation, remote sensing, ponds coastal zone; river delta
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Fernerkundung der Landoberfläche (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Ottinger, Dr. Marco
Hinterlegt am:04 Jul 2017 11:21
Letzte Änderung:21 Nov 2023 13:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.