elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Class imbalance in unsupervised change detection – A diagnostic analysis from urban remote sensing

Leichtle, Tobias und Geiß, Christian und Lakes, Tobia und Taubenböck, Hannes (2017) Class imbalance in unsupervised change detection – A diagnostic analysis from urban remote sensing. International Journal of Applied Earth Observation and Geoinformation, 60, Seiten 83-98. Elsevier. doi: 10.1016/j.jag.2017.04.002. ISSN 1569-8432.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0303243417300867

Kurzfassung

Automatic monitoring of changes on the Earth’s surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k‐means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results with respect to class imbalance while the SOM clustering exhibited a distinct optimization towards a balanced distribution of classes.

elib-URL des Eintrags:https://elib.dlr.de/112072/
Dokumentart:Zeitschriftenbeitrag
Titel:Class imbalance in unsupervised change detection – A diagnostic analysis from urban remote sensing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Leichtle, Tobiastobias.leichtle (at) slu-web.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Lakes, Tobiatobia.lakes (at) geo.hu-berlin.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:August 2017
Erschienen in:International Journal of Applied Earth Observation and Geoinformation
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1016/j.jag.2017.04.002
Seitenbereich:Seiten 83-98
Verlag:Elsevier
ISSN:1569-8432
Status:veröffentlicht
Stichwörter:Change detection; Object-based image analysis (OBIA); Very-high resolution (VHR) remote sensing; Class imbalance; Clustering; Urban environment
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Zivile Kriseninformation und Georisiken (alt), R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Deutsches Fernerkundungsdatenzentrum > Landoberfläche
Hinterlegt von: Leichtle, Tobias
Hinterlegt am:05 Jul 2017 08:58
Letzte Änderung:28 Mär 2023 23:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.