elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

QUANTIFYING THE BENEFITS OF SPEECH RECOGNITION FOR AN AIR TRAFFIC MANAGEMENT APPLICATION

Helmke, Hartmut und Oualil, Youssef und Schulder, Marc (2017) QUANTIFYING THE BENEFITS OF SPEECH RECOGNITION FOR AN AIR TRAFFIC MANAGEMENT APPLICATION. ESSV2017, 2017-03-15 - 2017-03-17, Saarbrücken, Deutschland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Abstract: The project AcListant® (Active Listening Assistant), which uses automatic speech recognition to recognize the commands in air traffic controller to pilot communication, has achieved command recognition rates above 95%. These high rates were obtained with an Assistance-Based Speech Recognition (ABSR). An Arrival Manager (AMAN) cannot exactly predict the next actions of a controller, but it knows which commands are plausible in the current situation and which not. Therefore, the AMAN generates a set of possible commands every 20 seconds, which serves as context information for the speech recognizer. Different validation trials have been performed with controllers from Düsseldorf, Frankfurt, Munich, Prague and Vienna in DLR’s air traffic simulator in Braunschweig from 2014 to 2015. Decision makers of air navigation providers (ANSPs) are primary not interested in high recognition rates, respectively, low error rates. They are interested in reducing costs and efforts. Therefore, the validation trials, that were performed at the end of 2015, aimed at quantifying the benefits of using speech recognition with respect to both efficiency and controller workload. The paper describes the experiments performed to show that with ABSR support controller workload for radar label maintenance could be reduced by a factor of three and that ABSR enables fuel savings of 50 to 65 liters per flight

elib-URL des Eintrags:https://elib.dlr.de/111188/
Dokumentart:Konferenzbeitrag (Poster)
Titel:QUANTIFYING THE BENEFITS OF SPEECH RECOGNITION FOR AN AIR TRAFFIC MANAGEMENT APPLICATION
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Helmke, Hartmuthartmut.helmke (at) dlr.dehttps://orcid.org/0000-0002-1939-0200NICHT SPEZIFIZIERT
Oualil, YoussefudsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schulder, MarcudsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2017
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Active Listening Assistant; automatic speech recognition
Veranstaltungstitel:ESSV2017
Veranstaltungsort:Saarbrücken, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 März 2017
Veranstaltungsende:17 März 2017
Veranstalter :Saarland University
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Effiziente Flugführung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Lotsenassistenz
Hinterlegt von: Diederich, Kerstin
Hinterlegt am:27 Apr 2017 10:37
Letzte Änderung:24 Apr 2024 20:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.