elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Review of studies on tree species classification from remotely sensed data

Fassnacht, Fabian und Latifi, Hooman und Stereńczak, Krzysztof und Modzelewska, Aneta und Lefsky, Michael und Waser, Lars T. und Straub, Christoph und Ghosh, A. (2016) Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment, 186 (214), Seiten 64-87. Elsevier. doi: 10.1016/j.rse.2016.08.013. ISSN 0034-4257.

[img] PDF - Nur DLR-intern zugänglich
4MB

Offizielle URL: http://ac.els-cdn.com/S0034425716303169/1-s2.0-S0034425716303169-main.pdf?_tid=8f41926c-74d3-11e6-a58f-00000aacb362&acdnat=1473236447_b137b8208469ec6b56c13bd1273d7504

Kurzfassung

"Spatially explicit information on tree species composition of managed and natural forests, plantations and urban vegetation provides valuable information for nature conservationists as well as for forest and urban managers and is frequently required over large spatial extents. Over the last four decades, advances in remote sensing technology have enabled the classification of tree species from several sensor types. While studies using remote sensing data to classify and map tree species reach back several decades, a recent review on the status, potentials, challenges and outlooks in this realm is missing. Here, we search for major trends in remote sensing techniques for tree species classification and discuss the effectiveness of different sensors and algorithms based on a literature review. This review demonstrates that the number of studies focusing on tree species classification has increased constantly over the last four decades and promising local scale approaches have been presented for several sensor types. However, there are few examples for tree species classifications over large geographic extents, and bridging the gap between current approaches and tree species inventories over large geographic extents is still one of the biggest challenges of this research field. Furthermore, we found only few studies which systematically described and examined the traits that drive the observed variance in the remote sensing signal and thereby enable or hamper species classifications. Most studies followed data-driven approaches and pursued an optimization of classification accuracy, while a concrete hypothesis or a targeted application was missing in all but a few exceptional studies. We recommend that future research efforts focus stronger on the causal understanding of why tree species classification approacheswork under certain conditions or – maybe even more important -why they do not work in other cases. This might require more complex field acquisitions than those typically used in the reviewed studies. At the same time, we recommend reducing the number of purely data-driven studies and algorithmbenchmarking studies as these studies are of limited value, especially if the experimental design is limited, e.g. the tree population is not representative and only a few sensors or acquisition settings are simultaneously investigated.

elib-URL des Eintrags:https://elib.dlr.de/109131/
Dokumentart:Zeitschriftenbeitrag
Titel:Review of studies on tree species classification from remotely sensed data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fassnacht, Fabianfabian.fassnacht (at) kit.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Latifi, Hoomanhooman.latifi (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stereńczak, Krzysztofforest research institute, polandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Modzelewska, Anetaforest research institute, polandNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lefsky, MichaelNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Waser, Lars T.swiss federal institute for forestNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Straub, Christophchristoph.straub (at) lwf.bayern.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ghosh, A.department of earth and planetary sciences, tennesseeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2016
Erschienen in:Remote Sensing of Environment
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:186
DOI:10.1016/j.rse.2016.08.013
Seitenbereich:Seiten 64-87
Verlag:Elsevier
ISSN:0034-4257
Status:veröffentlicht
Stichwörter:Forestry, Remote sensing, Scale, Tree species, Classific ation, Mapping, Validation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Wöhrl, Monika
Hinterlegt am:07 Dez 2016 13:13
Letzte Änderung:07 Dez 2016 13:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.