elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods

Cabrieto, Jedelyn und Tuerlinckx, Francis und Kuppens, Peter und Grassmann, Mariel und Ceulemans, Eva (2016) Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods. Behavior Research Methods. Springer. doi: 10.3758/s13428-016-0754-9. ISSN 1554-351X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Abstract Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

elib-URL des Eintrags:https://elib.dlr.de/108401/
Dokumentart:Zeitschriftenbeitrag
Titel:Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cabrieto, JedelynNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tuerlinckx, FrancisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kuppens, PeterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grassmann, Marielmariel.grassmann (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ceulemans, EvaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2016
Erschienen in:Behavior Research Methods
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.3758/s13428-016-0754-9
Verlag:Springer
ISSN:1554-351X
Status:veröffentlicht
Stichwörter:Change point detection . Correlation changes . Multivariate time series . DeCon . ROBPCA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Faktor Mensch und Sicherheit in der Luftfahrt (alt)
Standort: Hamburg
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Luft- und Raumfahrtpsychologie
Hinterlegt von: Witt, Andrea
Hinterlegt am:07 Dez 2016 15:13
Letzte Änderung:08 Mär 2018 18:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.