Tanase, Radu und Datcu, Mihai und Raducanu, Dan (2016) A convolutional deep belief network for polarimetric SAR data feature extraction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2016, Seiten 2917-2920. IEEE Xplore. IGARSS 2016, 2016-07-10 - 2016-07-15, Beijing, China. doi: 10.1109/igarss.2016.7730968. ISBN 978-1-5090-3332-4. ISSN 2153-7003.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://ieeexplore.ieee.org/document/7729753/
Kurzfassung
This paper proposes a custom convolutional deep belief network for polarimetric synthetic aperture radar (PolSAR) data feature extraction. The proposed architecture stands out through the interesting features it shows, starting with the fact that it is adapted to fully polarimetric SAR data. Then, the multilayer approach allows the stepwise discovery of higher-level features. The convolutional approach allows the discovery of local, spatially invariant features and makes the architecture scalable to fully sized PolSAR images. The network is trained in an unsupervised manner, without using labeled data and then it succeeds to extract powerful features from PolSAR patches. This fact is demonstrated by applying supervised and unsupervised classification algorithms on features extracted from patches of a fully polarimetric multi-look F-SAR image over Kaufbeuren airfield, Germany.
elib-URL des Eintrags: | https://elib.dlr.de/108049/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | A convolutional deep belief network for polarimetric SAR data feature extraction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 14 Juli 2016 | ||||||||||||||||
Erschienen in: | Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2016 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/igarss.2016.7730968 | ||||||||||||||||
Seitenbereich: | Seiten 2917-2920 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 978-1-5090-3332-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Feature extraction, Computer architecture, Scattering, Neurons, Training, Optical filters, Microwave filters | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2016 | ||||||||||||||||
Veranstaltungsort: | Beijing, China | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 10 Juli 2016 | ||||||||||||||||
Veranstaltungsende: | 15 Juli 2016 | ||||||||||||||||
Veranstalter : | IEEE Org. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
Hinterlegt am: | 18 Nov 2016 12:46 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags