elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The Use of Cascaded Learning for TerraSAR-X Image Classification

Dumitru, Corneliu und Cui, Shiyong und Espinoza-Molina, Daniela und Schwarz, Gottfried und Datcu, Mihai (2016) The Use of Cascaded Learning for TerraSAR-X Image Classification. TerraSAR-X/TanDEM-X Science Team Meeting 2016, 2016-10-17 - 2016-10-20, Oberpfaffenhofen, Germany.

[img] PDF - Nur DLR-intern zugänglich
90kB

Kurzfassung

The abundance of available satellite images calls for their automated analysis and interpretation, includ-ing the semantic annotation of discovered objects as well as the monitoring of changes within image time series. A common approach is to cut large satellite image into contiguous patches and to classify each patch separately by attaching a semantic patch content label to it. In this context, the selected patch size is a critical parameter, as patches being too large may contain multiple objects and patches being too small may not be understandable due to missing contextual information. Therefore, we advo-cate a “cascaded” strategy where, when necessary, large patches are iteratively decomposed into small-er sub-patches until a clear semantic content understanding has been reached. This strategy can be em-bedded into an interactive active learning and exploitation environment where high classification effi-ciency can be reached by skipping unnecessary decomposition steps. The resulting local multi-level off-spring statistics is indicative of the recorded land cover category. In the following, we report about our experiences with medium and high resolution Synthetic Aperture Radar (SAR) image classification when using such a cascaded learning approach. The most important phenomenon is the impact of image reso-lution. The higher the resolution, the higher the number of discernible land cover categories, in particu-lar for built-up areas and industrial sites where we can see and interpret the impact of distinct human-made activities. Here, the offspring statistics depends on the actual image resolution. This becomes ap-parent when we compare the same target areas acquired by different space-borne SAR sensors (e.g., Sentinel-1A versus TerraSAR-X). In addition, it turns out that several country-specific regional surface cover categories can be trained and retrieved with SAR images that often appear differently in optical satellite images; however, any increase in classification accuracy has to be paid for by higher computa-tional effort.

elib-URL des Eintrags:https://elib.dlr.de/108010/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:The Use of Cascaded Learning for TerraSAR-X Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Dumitru, Corneliucorneliu.dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cui, Shiyongshiyong.cui (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Espinoza-Molina, Danieladaniela.espinozamolina (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schwarz, Gottfriedgottfried.schwarz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Oktober 2016
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Classification, cascaded learning, TerraSAR-X
Veranstaltungstitel:TerraSAR-X/TanDEM-X Science Team Meeting 2016
Veranstaltungsort:Oberpfaffenhofen, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 Oktober 2016
Veranstaltungsende:20 Oktober 2016
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:18 Nov 2016 10:21
Letzte Änderung:24 Apr 2024 20:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.